
CSC236, Summer 2005, Assignment 3
Sample solution

Danny Heap

The methods listed below may be examined and run by downloading A3Examples.java from the web
page. If you have any questions about Java, please ask. You may assume (although it's not true) that the
Java type int includes all integers.

1. Use the technique from lecture to prove the following method is correct with respect to its speci�cation
(precondition and postcondition).

/**

* pow(b,p) returns b^p.

* @param b an integer base to exponentiate.

* @param p a natural number power to exponentiate to.

* @return b^p.

* Precondition: b is an integer and p is a natural number.

* Postcondition: b^p is returned.

*/

public static int pow(int b,int p) {

int bToTheP = 1;

int i = 0;

while (i != p) {

bToTheP *= b;

++i;

}

return bToTheP;

}

Solution: I'd like to have bToTheP equal to bp when the loop exits, so I prove the following invariant:

Claim 1a: Let P (j) be \If there is a jth iteration of the loop of pow then bToThePj = bij and ij = j."
I claim P (j) is true for all j 2 N.

Proof (induction on j): Suppose j = 0. Then (by the program) bToTheP0 = 1, i0 = 0, so bToThePj
= 1 = pij , and the base case holds.

Induction step: Assume that P (j) holds for some j 2 N. I want to show that this implies P (j + 1).
If there is no (j + 1)th iteration, then P (j + 1) is vacuously true. Otherwise, by the program,
bToThePj+1 = bToThePj � b = (by the IH) bj � b = bj+1. Also (by the program) ij+1 = ij + 1
= (by the IH) j + 1. This is what P (i+ 1) claims, so P (i)) P (i+ 1), as wanted.
I conclude that P (i) is true for all i 2 N. QED.

Claim 1b: If the precondition holds when pow starts and pow terminates, when it does terminate the
postcondition holds.

1

Proof: Suppose the precondition holds and pow terminates after j iterations. Then (by the program)
ij = p, so (by the IH) j = p, and (by the IH again) bToThePij = bp. Thus bp is returned, and the
postcondition holds.

I want to associate a strictly-decreasing sequence of natural numbers with the loop iterations, so I
prove the following claims:

Claim 1c: Let Q(j) be \If there is a jth loop iteration in pow, then ij � p." I claim that Q(j) is true
for all j 2 N.

Proof (induction on j): Suppose j = 0. Then (by the program) ij = 0 and (by the precondition)
p is a natural number, so p � ij , so the base case holds.

Induction step: Suppose Q(j) holds for some arbitrary j 2 N. I wish to show that Q(j+ 1) follows.
If there is no (j+1)th iteration of the loop, Q(j+1) holds vacuously. Otherwise, (by the program)
ij 6= p and (by the IH) ij � p, so ij < p. The program then sets ij+1 = ij + 1, so ij < p implies
ij+1 = ij + 1 � p. Thus Q(j + 1) holds, so Q(j)) Q(j + 1), as wanted.
I conclude that P (j) is true for all j 2 N. QED.

Claim 1d: For each j 2 N, if the loop in pow executes at least j + 1 times, then p� ij > p� ij+1.

Proof: If the loop iterates j + 1 times, then it certainly iterates j times, so by P (j) and P (j + 1)
(above) we have that ij = j and ij+1 = j + 1, so p � ij = p � j > p � (j � 1) = p � ij+1, as
claimed.

Claim 1e: If the precondition holds, then the loop in pow terminates.

Proof: If the loop condition holds, then by Q(j) we know that the sequence hp � iji, contains only
natural numbers, since it is a di�erence of integers and p � ij according to Q(j). Also, by
Claim 1d, the sequence hp � iji is strictly decreasing. Thus hp � iji corresponds to a subset of
the natural numbers, and hence (PWO) has a least element, which (since the sequence is strictly
decreasing) is also its last element. Call the last element p � ik. Then there is no (k + 1)th
iteration of the loop, so the loop terminates.

Thus I have proven partial correctness (Claim 1a) and termination (Claim 1e) of pow in terms of its
precondition/postcondition pair.

2

2. Use the technique from lecture to prove the following method is correct with respect to its precondi-
tion/postcondition pair.

/**

* recPow(b,p) returns b^p (more efficiently).

* @param b an integer base to exponentiate.

* @param p a natural number power to exponentiate to.

* @return b^p.

* Precondition: b is an integer and p is a natural number.

* Postcondition: recPow(b,p) terminates, and when it does b^p is returned.

*/

public static int recPow(int b, int p) {

int bToTheP = 1;

if (p % 2 == 1) {

bToTheP = b;

}

if (p < 2) {

return bToTheP;

}

// p/2 is integer division

return bToTheP * recPow(b, p/2) * recPow(b,p/2);

}

Sample solution: This is a recursive program, so I prove that if the precondition is true when
recPow(b; p) is called, then recPow(b; p) terminates, and when it does it returns bp. The parameter
that expresses the size of the input is p, so I use induction on p.

Claim: Let P (p) be \8b 2 Z, If the precondition holds when recPow(b; p) is called, then recPow(b; p)
terminates, and when it does it returns bp." Then 8p 2 N; P (p).

Proof (complete induction on p): Assume P (f0; : : : ; p�1g) is true, for some arbitrary integer p.
I want to show that this implies P (p). There are three cases to consider:

Case 1, p = 0: In this case the program sets bToTheP to 1, does not execute the \(p%2 == 1)"
branch (since 0 is even), and then does execute the \(p < 2)" branch (since 0 < 2), terminating
and returning bToTheP = 1, which is b0. Thus this base case holds.

Case 2, p = 1: In this case the program sets bToTheP to 1, then executes the \(p%2 == 1)"
branch (since 1 is odd), setting bToTheP to b, and �nally executes the \(b < 2)" branch (since
1 < 2), terminating and returning bToTheP = b = b1. Thus this base case holds.

Case 3, p > 1: In this case I have assumed P (p=2) in the IH, since 0 � p=2 < p when p > 1.
The program sets bToTheP to 1, and then there are two sub-cases to consider:
Sub-case 3a, p is odd: In this case bToTheP is set to b (since p is odd), the program does

not execute the \(p < 2)" branch (since p � 2), and it returns bToTheP� recPow(b; p=2)�
recPow(b; p=2). By the IH, recPow(b; p=2) = bp=2, which equals b(p�1)=2 (since p is odd and
p=2 is integer division). Thus the program terminates and returns b� b(p�1)=2 � b(p�1)=2

= bp. So the claim holds in this case.
Sub-case 3b: In this case bToTheP is set to 1, the \(p%2 == 1)" branch is not executed

(since p is even), the \(p < 2)" branch is executed (since p � 2), and the program returns

3

bToTheP � recPow(b; p=2) � recPow(b; p=2). By the IH recPow(b; p=2) = bp=2. Since p is
even, p=2 + p=2 = p, so the program terminates and returns 1� bp=2 � bp=2 = bp. So the
claim holds in this case.

In all cases the claim holds, so P (f0; : : : ; p� 1g)) P (p).
I conclude that P (p) is true for all p 2 N. QED.

3. Use the technique from lecture to prove the following method correct with respect to its precondi-
tion/postcondition pair.

/**

* div(m,n) returns quotient and remainder for m/n

* @param m a natural number dividend.

* @param n a positive natural number divisor.

* @return [q,r] such that m = qn + r and 0 <= r < n.

* Precondition: m is a natural number, n is a positive natural number.

* Postcondition: [q,r] is returned and m = qn + r, 0 <= r < n.

*/

public static int[] div(int m, int n) {

int[] quotRem = {0,0}; // initialized to [0,0]

while (m != quotRem[0] * n + quotRem[1]) {

if (quotRem[1] < n-1) {

++quotRem[1];

}

else {

++quotRem[0];

quotRem[1] = 0;

}

}

return quotRem;

}

Sample solution: My informal examination of the program suggests that quotRem[0] �n+ quotRem[1]

never exceeds m, and that it increases by 1 each loop iteration until it exits. Therefore I prove
the following claim:

Claim 3a: Let P (i) be \8n;m 2 N; n > 0, if the precondition holds when div(m;n) begins and there
is an ith iteration of the loop in div(m;n), thenquotRem[0]i � n + quotRem[1]i � m and 0 �
quotRem[1]i < n. I claim that 8i 2 N; P (i).

Proof (induction on i): If i = 0, then the program sets quotRem[0]0 = quotRem[1]0 = 0, and
certainly m � 0n + 0 = 0, since (by the precondition) m is a natural number. Also, 0 �
quotRem[1]0 = 0 < n, since (by the precondition) n is a positive natural number. Thus P (0)
holds.

Induction step: Assume that P (i) is true for some arbitrary natural number i. I must show that
this implies P (i + 1). If there is no (i + 1)th loop, then P (i + 1) is vacuously true. Otherwise,
there is an (i + 1)th loop iteration, so m 6= quotRem[0]i � n + quotRem[1]i and (from the IH
P (i)) m � quotRem[0]i �n+ quotRem[1]i, you must have m > quotRem[0]i �n+ quotRem[1]i.
There are two cases to consider:

Case 1, quotRem[1]i < n� 1: In this case the \if (quotRem < n � 1)" branch is executed, and

4

quotRem[1]i+1 = quotRem[1]i+ 1, and so

m > quotRem[0]i � n+ quotRem[1]i � quotRem[0]i � n+ quotRem[1]i + 1
= quotRem[0]i+1 � n+ quotRem[1]i+1:

Also, quotRem[1]i < n� 1) quotRem[1]i + 1 = quotRem[1]i+1 < n. Thus P (i+ 1) holds
in this case.

Case 2, quotRem[1]�n� 1: In this case the \(quotRem[1] < n � 1) else" branch is executed,
setting quotRem[0]i+1 = quotRem[0]i and quotRem[1]i+1 = 0. By P (i) we know that
quotRem[1]i � n� 1, so in this case we must have quotRemi = n� 1, and so

m > quotRem[0]i � n+ quotRem[1]i = quotRem[0]i � n+ (n� 1)
) m � quotRem[0]i � n+ n

= (quotRem[0]i + 1) � n+ 0
= quotRem[0]i+1 � n+ quotRem[1]i+1:

Also, 0 � 0 = quotRem[1]i < n (since n is a positive number, according to the precondition).
Thus P (i+ 1) holds in this case as well.

In either case, P (i+ 1) holds, so P (i)) P (i+ 1), as wanted.
I conclude P (i) is true for all i 2 N. QED.

Claim 3b (partial correctness): If the precondition is true when div(m;n) begins, and if div(m;n)
terminates, then the postcondition holds.

Proof: Suppose div(m;n) satis�es the precondition when it begins, and then terminates after some
arbitrary iteration k of the loop. Since the loop terminates, we must have quotRem[0]k � n +
quotRem[1]k = m. Also, by P (k), we have 0 � quotRem[1]k < n. Thus quotRem with values
that satisfy the postcondition is returned. QED.

Claim 3c, decreasing sequence in N: Let sequence hdii, associated with the ith iteration of the
loop, be de�ned by hdii = hm � (quotRem[0]i � n + quotRem[1]i)i. Then I claim that hdii is a
strictly decreasing sequence of natural numbers.

Proof: Since di is formed from di�erences, sums, and products of integers, it is clearly an integer.
By P (i) (proved above) di is non-negative, hence di is a natural number. Suppose there is an
(i + 1)th iteration of the loop. Then, examining the two cases in the proof of P (i), we see that
di+1 = di � 1, so the sequence is strictly decreasing. Thus hdii is a strictly decreasing sequence
of natural numbers. QED.

Claim 3d (termination): If the precondition is true when div(m;n) is started, then it terminates.

Proof: If the precondition is true when div(m;n) starts, then each iteration i of the loop is associated
with element hdii of the sequence from Claim 3c. This sequence is non-empty (since it contains,
at the very least, d0), so its elements correspond to a non-empty subset of N. This means (by the
PWO) there is a least element, call this dk. Since the sequence is strictly decreasing, there is no
element dk+1, and hence the loop terminates before iteration k + 1. QED.

4. De�ne T (n) by:

T (n) =

(
c; 1 � n < 5
a1T (bn=5c) + a2T (dn=5e) + dn; n � 5;

. . . where a1; a2 2 N, a1 + a2 = 5, and c; d 2 R+ (the positive reals). Prove there is some positive
constant � 2 R, such that T (n) � �n log5 n, for all n � 5. You may not use the Master Theorem.

5

Sample solution: I need to prove a special case of the result when n is a natural power of 5, and also that
T (n) is monotonic.

Claim 4a: Let P (k) be \T (5k) = 5k(c+ kd)." The I claim P (k) is true for all k 2 N.

Proof (induction on k): Suppose k = 0. Then P (0) claims that T (1) = c, which is true, by inspecting
the de�nition of T (1). So the base case holds.

Induction step: Assume that P (k) holds for some arbitrary k 2 N. I want to show that P (k + 1) holds.
Since b5k+1=5c = d5k+1=5e = 5k, we have

T (5k+1) = 5T (5k) + d5k+1 (by de�nition)
= 5

�
5k(c+ kd5k)

�
+ d5k+1 (by IH P (k))

= 5k+1(c[k + 1]d):

This is exactly what P (k + 1) claims, so P (k)) P (k + 1).

I conclude that P (k) is true for all k 2 N. QED.

Claim 4b: 8n 2 N, n � 5) 1 � bn=5c � dn=5e < n.

Proof: By de�nition of
oor and ceiling we have bn=5c � dn=5e. Write n = 5k + j, for some k 2 Z and
0 � j < 5 (this is possible, by the division algorithm). Then we know that (depending on whether
j = 0 or not): ln

5

m
=

�
5k + j

5

�
=

5k + i
5

; where

(
i = 5� j; j > 0
i = j; j = 0

So dn=5e � (n+4)=5. Also, n > 4, so n+n > n+4, and 5n > n+4, so n > (n+1)=5 � dn=5e. At the
other end, n � 5 means n=5 � 1, so bn=5c � 1. Putting these all together, 1 � bn=5c � dn=5e < n.
QED.

Claim 4c (monotonicity): Let P (n) be \If m is a positive natural number less than n, then T (m) �
T (n)." Then I claim that 8n 2 N� f0g, P (n) is true.

Proof (complete induction on n): Assume that P (f1; : : : ; n � 1g) is true for some arbitrary positive
natural number n. I want to show that this implies P (n). There are three cases to consider:

Case 1, 1 � n < 5: In this case, the only positive natural numbers less than n are 1 � m < n, so
T (m) = c = T (n), so the claim holds in these cases.

Case 2, n = 5: In this case, the only positive natural numbers less than n are 1 � m < 5, with
T (m) = c in each case, so T (m) = c < 5T (1) + 5d = 5(c+d), since c and d are positive constants.
So the claim holds in this case.

Case 3, n > 5: . In this case we have 1 � bn=5c; dn=5e; n � 1 < n, so the IH assume P (n � 1),
P (bn=5c), and P (dn=5e). By P (n � 1) we know that for any 1 � m < n � 1 we have T (m) �
T (n� 1), so it is enough to show that T (n� 1) � T (n), and

T (n� 1) = a1T (b(n� 1)=5c) + a2T (d(n� 1)=5e) + d(n� 1) (since n > 5) n� 1 � 5)
� a1T (bn=5c) + a2T (dn=5e) + dn (by P (bn=5c), P (dn=5e), and d > 0)

Thus P (f1; : : : ; n� 1g)) P (n), as wanted, in each case.

I conclude that P (n) is true for all n 2 N� f0g..
Claim 4d: If n � 5, then there is some � 2 R such that T (n) � �nlog5n.

6

Proof: Let n � 5. Then n = 5log5 n � 5dlog5 ne. Call 5dlog5 ne bn. Then we have

T (n) � T (bn) (by Claim 4c)
= bn(c+ d log5 bn) (by Claim 4a)
� 5n(c+ d log5 5n) (log5 is monotonic, and dlog5ne < (log5 n) + 1)
= 5n(c+ d(log5 n+ 1)) � 5n(c log5 n+ d(2 log5 n)) (log5 n � 1, since n � 5.)
= 5(c+ 2d)n log5 n

Thus the claim holds, with � = 5(c+ 2d). QED.

7

