CSC236, Summer 2005, Assignment 2 sample solution

Danny Heap

1. MANIPULATE A STACK: Suppose you have a sequence of n distinct characters, and a LIFO (Last In,
First Out) stack that allows exactly two operations:

(a) pusH: If the sequence is nonempty, remove the first element from the sequence and add it to the
top of the stack. Otherwise do nothing.

(b) popp: If the stack is nonempty, remove the top element and print it to output. Otherwise do
nothing.

If you begin with a sequence of n = 2 distinct characters, then you can produce exactly 2 distinct
outputs. Suppose your sequence is (zy), then you can produce

xXy: push popp push popp
yx: push push popp popp

How many different outputs can you produce with a sequence zyz, of length 3?7 How about of length
n? Prove your claims.

CraM: Let f(n) be defined as

1, n=20

fm) = {2;:; f@fn—1-4), n>0

CraM: Let P(n) be “There are f(n) distinct outputs from the stack described above starting with a
string with n distinct characters.” Then for all n € N, P(n).

PROOF (COMPLETE INDUCTION ON n): If n = 0, then P(0) asserts that there is f(0) = 1 distinct
output starting with an empty string. This is certainly true, since the unique empty string
is output, so the base case holds.

INDUCTION STEP: Assume that P({0,...,n — 1}) is true for some arbitrary natural number 7.
I need to prove that this implies P(n) is true. If n = 0 there is nothing to prove, since
this was verified in the base case. Otherwise the IH assume P(z) and P(n — 1 — 2) for every
0 <12 <n-—1 WLOG, assume that the first character of the original sequence of length
n is the character z, and partition the output sequences according to where z occurs in the
output — at position ¢ of the output, where 0 <z < mn — 1. This partition counts all possible
outputs, and has no duplicates, since a particular output is specified by the position of the
character z.

Since this is a LIFO stack, the ¢ characters that are output before z, in positions {0, ...,7—1},
must have been pushed onto the stack after £ was pushed, and popped from the stack before z
was popped. Thus these characters are the next 1 characters pushed following z in the original
sequence, that is characters {1,...,¢} of the original sequence. Since they are pushed and



popped through a stack with z sitting on the bottom, by the IH they have f(i) distinct
outputs.

Similarly the n — 1 — ¢ characters that are output after z, in positions {t +1,...,n — 1}, are
both pushed and popped after z is popped, which means they pushed and popped after the ¢
characters output before . Thus these characters follow the first ¢ in the original sequence,
so they are characters {¢ + 1,...,n — 1} of the original sequence. Since they are pushed
and popped through a stack that starts out empty (after = is popped), by the IH they have
f(n —1—1) distinct outputs.

Let F; be the set of distinct outputs of the first ¢ characters following z in the original
sequence, and F,,_1_; be the set of distinct outputs of characters {z +1,...,n — 1 — ¢} of
the original sequence. The Cartesian product F; x F,_1_; has f(2)f(n — 1 — 2) pairs (see
Chapter 0 of the Course Notes). There is a 1-1 correspondence between the pairs of outputs
in F; X Fp,_1_; and the outputs of length n with z in position ¢, simply by concatenating the
first element of the pair with ¢ and then with the second element of the pair. Thus there are
f(n)f(n — 1 —1) distinct outputs of length n with z in position :.

Summing these over all the partitions, for each possible position  may occupy in the output,
yields E?;Ol f(#)f(n — 1 — 1) possible outputs. Thus P({0,...,n — 1}) = P(n), as wanted.

I conclude that P(n) is true for all n € N. QED.

2. Here is a recursive definition for 7%, a subset of the family of ternary strings. Let 7 be the smallest
set such that:

Basis: 01isin 7*.

INDUCTION STEP: If 2,y € 7%, then so are 20y, 122, and 2z1.

(a) Prove that if & € N, then there is no string in 7* with exactly 3* + 1 zeros.

CrAM Al: Let P(e) be “e has an odd number of zeros.” Then for all e € T*, P(e).
PROOF (INDUCTION ON e): Suppose e is in the basis. Then e = 0, which has an odd number
of zeros, so the claim holds for the basis.
INDUCTION STEP: Suppose z,y are arbitrary elements of 7*. There are three cases to consider

1. e = z0y, then by the induction hypothesis for some 7,k € Z, x has 2k + 1 zeros and
y has 27 + 1 zeros. Thus e has 2(j + k¥ + 1) + 1 zeros, which is an odd number since
7+ k+1is an integer (the integers are closed under addition).

ii. e = 1z2, then by the induction hypothesis ¢ has an odd number of zeros, which is the
same number as e does, since e adds no zeros.

iii. e = 221, then by the induction hypothesis £ has an odd number of zeros, which is the
same number as e does, since e adds no zeros.

Thus in all three possible cases, e has an odd number of zeros, so P({z,y}) = P(e).
I conclude that P(e) is true for all e € T*. QED.

CLAIM A2: Let P(k) be “3% + 1 is even.” Then for all k € N, P(k).

PROOF (INDUCTION ON k): If k& = 0 then P(k) states that 3° + 1 = 2 is even, which is
certainly true, so the claim holds for the base case.

INDUCTION STEP: Assume P(k) for some arbitrary & € N. [ must show that this implies
P(k41). By the IH, 3* +1 is even, so there is some integer ¢ such that 3¥ + 1 = 2. This
means that 3**1 + 1 can be written as

341 = 388 +1=32i-1)+1 [bylH]
6t —2=2(3—1).



Since 3¢ — 1 is an integer (integers are closed under multiplication and subtraction),
3k*+1 1 1 is even, and so P(k) = P(k + 1).
I conclude that P(k) is true for all K € N. QED.

By A2, if expression e has 3% 4+ 1 zeros, then e has an even number of zeros, hence not an odd
number of zeros. By Al, every expression in 7 has an odd number of zeros, so e € 7*. QED.

(b) Prove that if k£ € N, then there is no string in 7* that has exactly 2¥*! digits.

CramM B1l: Let P(e) be “e has an odd number of digits.” Then Ve € T*, P(e).
PROOF (INDUCTION ON e): Suppose e is defined in the basis. Then e = 0, and hence has 1
digit, which is odd, so the claim holds for the basis.
INDUCTION STEP: Assume that P(z) and P(y) hold for arbitrary expressions in 7*. There
are three cases to consider:

i

ii.

il.

If e = 0y, then the number of digits in e is the sum of the number of digits in z and
y, plus one more digit. Thus, for some integers 7, k expression e has 25 +1+2k+1+1
digits, which can be rewritten as 2(7 + & + 1) + 1 digits. This is an odd number, since
(j+%k+1) is an integer (integers are closed under addition). Thus in this case P({z,y})
= P(e).

If e = 122, then the number of digits in e is the sum of the number of digits in 2 plus
2. Thus, for some integer k, e has 2k + 1 + 2 digits, or 2(k + 1) + 1 digits, an odd
number since (k + 1) is an integer. Thus, in this case, P({z,y}) = P(e).

If e = 221, then the number of digits in e is the sum of the number of digits in 2 plus
2. Thus, for some integer k, e has 2k + 1 + 2 digits, or 2(k + 1) + 1 digits, an odd
number since (k + 1) is an integer. Thus, in this case, P({z,y}) = P(e).

In all three cases, P({z,y}) = P(e), and these cases exhaust the possibilities, so P({z,y})
= P(e) for an arbitrary expression defined in the induction step.

I conclude that P(e) is true for all e € T*. QED.
Suppose some string e has 25! digits, for some & € N. Then (re-writing) that e has 2 x 2* digits,

an even number (since 2% is an integer). Thus e does not have an odd number of digits, so P(e)
is false, so by B1, e ¢ T*. QED.

(c) Prove that there is no string in 7* whose digits sum to 97.
Cramv C1: Let P(e) be “The digits of e sum to an integer multiple of 3.” Then Ve € T*, P(e).

PROOF (STRUCTURAL INDUCTION ON e): If e is defined in the basis, then e = 0, and its
digits sum to 0 = 3 x 0, which is an integer multiple of 3. Thus P(e) holds for the basis.

INDUCTION STEP: Assume that P(z) and P(y) hold for arbitrary elements of 7*. There are
three cases to consider:

i

ii.

iii.

If e = 20y, then the sum of the digits in e is the sum of the digits in = plus 0 plus the
sum of the digits in y. Thus, by the IH, for some integers 7, k, the sum of the digits in
eis 37+ 3k +0 = 3(y + k), which is an integer multiple of 3, since (j + k) is the sum
of integers, and hence an integer. So in this case P({z,y}) = P(e).

If e = 122, then the sum of the digits in e is 1 plus the sum of the digits in = plus 2.
Thus, by the [H, for some integer k, the sum of the digits in e is 1+ 3k +2 = 3(k + 1),
which is a multiple of 3 since (k + 1) is the sum of integers (and hence an integer). So
in this case P({z,y}) = P(e).

If e = 221, then the sum of the digits in e is 2 plus the sum of the digits in = plus 1.
Thus, by the [H, for some integer k, the sum of the digits in e is 2+ 3k +1 = 3(k + 1),
which is a multiple of 3 since (k + 1) is the sum of integers (and hence an integer). So
in this case P({z,y}) = P(e).



The three cases are exhaustive, and in each case P({z,y}) = P(e), so P({z,y}) = P(e).
I conclude that P(e) is true for all e € T*. QED.

According to Proposition 1.7 of the Course Notes, any natural number has a unique quotient and
remainder when divided by 3. In the case of 97 the quotient is 32 and the remainder is 1, whereas
any multiple of 3 has a remainder of 0, so 97 is not a multiple of 3. Suppose a string e has 97
characters. Since 97 is not an integer multiple of 3, P(e) is false, so by Cl e ¢ T*. QED.

3. In lecture we discussed the recursive formula for G(n), the number of binary strings of length n that
do not have adjacent zeros.

(a) Using the expression from class, derive a closed form for G(n), the number of binary strings of
length n that do not have adjacent zeros.

SOLUTION: The formula we derived in class is:

1, n=20
G(n) =< 2, n=1.
Gn-1)+Gn-2), n>1

A short proof by induction would establish that this formula gives the number of binary
strings of length n that do not have adjacent zeros, but you are allowed to assume the
formula given. Comparing G(n) to F(n) (the Fibonacci function) shows that G(0) = F(2)
and G(1) = F(3). We would like to prove that, in general, G(n) = F(n + 2). Let P(n) be
“G(n) = F(n +3).”

Cramv: Vn € N, P(n).

PROOF (INDUCTION ON n): If n = 0, then P(n) asserts that there are F(2) = 1 binary
strings of length 0 without adjacent zeros, which is certainly true since the unique
length-zero binary string doesn’t have adjacent zeros. If n = 1, then P(1) asserts
that there are F'(3) = 2 binary strings of length 1 without adjacent zeros, and this is
certainly true since both binary strings of length 1 do not have adjacent zeros. Thus
the claim holds for the basis.

INDUCTION STEP: Assume that P({0,...,n —1}) is true for some arbitrary natural num-
ber n. I want to show that this implies P(n). If n < 2 there is nothing to prove, since
we have shown that P(n) holds in the base case. Otherwise, the induction hypothesis
claims that P(n — 1) and P(n — 2) are both true, so

Gn) = Gn-1)+G(n-2) [assumed defn. of G(n) for n > 1]
= F(n+1)+ F(n) [induction hypothesis]
= F(n+2) [definition of F(n = 2)]

Thus P({0,...,n —1}) = P(n).
I conclude that P(n) is true for all n € N. QED.
We already have a closed form for F(n), and we can now use it to express a closed form
for G(n):
¢n+2 _ $n+2
Gn)=F(n+2) = ——F—,
(n)=F(n+2) 75

...where ¢ = (14 +/5)/2, and ¢ = (1 — v/5)/2.



(b) Using the approach from class, develop a recursive formula (but not a closed form) for H(n), the
number of binary strings of length n that do not have 3 adjacent zeros. Justify your formula.

CraiM: Define H(n) by

(n) = 2", n <3
C\Hr-1)+Hn-2)+Hn-3), n>2

Let P(n) be “There are H(n) binary strings of length n without 3 adjacent zeros.” Then

Vn € N, P(n).

PROOF (INDUCTION ON n): For n € {0,1,2} P(n) asserts there are 2" binary strings of
length n without 3 adjacent zeros. This is certainly true since there are (established in
the Course Notes) 2™ binary strings of length n, and if n < 3 all of these do not have 3
adjacent zeros. Thus P(n) holds for the base case.

INDUCTION STEP: Assume that P({0,...,n — 1}) holds for some arbitrary integer n. I want
to prove that this implies P(n). If n < 3, we're done, since P(n) was established in the
base case. Otherwise, the IH assume P(n — 1), P(n — 2) and P(n — 3). To count the
number of binary strings without 3 adjacent zeros, we partition them into three disjoint
sets:

1. The binary strings of length n without 3 adjacent zeros with final digit 1. These are
formed by appending a 1 to any binary string of length n — 1 that doesn’t have 3
adjacent zeros, so there are H(n — 1) of these by the IH.

ii. The binary strings of length n without 3 adjacent zeros that end with the string 10.
These are formed by appending 10 to any binary string of length n — 2 that doesn’t
have 3 adjacent zeros, so there are H(n — 2) of these by the IH.

iii. The binary strings of length n without 3 adjacent zeros that end with the string 100.
These are formed by appending 100 to any binary string of length n — 3 that doesn’t
have 3 adjacent zeros, so there are H(n — 3) of these by the IH.

The three cases are exhaustive and disjoint, so there are H(n—1) + H(n—2) + H(n—3)

binary strings of length n without 3 adjacent zeros, so P({0,...,n — 1}) = P(n), as

wanted.

I conclude that P(n) is true for all n € N. QED. Thus H(n) is the number of binary strings

of length n that don’t have 3 adjacent zeros.

(c) Find a closed form for J(n), which is defined for n € N as:
1, n=20
Jn—-1)4+2J(n—-2), n>1

SOLUTION: The first step is to seek a real number that obeys the given recurrence, that is find r
so that »™ = r»~1 4+ 2r"=2, Dividing by r™~? yields the quadratic equation:

rP—r—2=0.

This equation has roots rg = 2 and r; = —1, and any linear combination of these roots
satisfies the recurrence, so for n > 1, ary + Br} = ar?™ + BrP™ + 2(ary ™2 + Bri~?). We
solve for a and 8 by considering the initial conditions, J(0) and J(1):

arg +0rY = JO0)=1=pB=1-a

arg+p0r; = 2a-f=2a-(1-a)=3a-1=1=a=2/3,8=1/3.



This yields a closed form for J(n):

2 1 2mt 4 (—1)”
=" 4 (-1 = 7
J(n) = 32" + 3(-1) 3

Let P(n) be “J(n) = (271 4 (=1)")/3.”

Cramv: For all n € N, P(n).

PROOF (INDUCTION ON n): If n = 0, then P(0) asserts that J(n) = 1 = (2 + (-1)°)/3,
which is certainly true. If n = 1, then P(1) asserts that P(1) = 1 = (22 — 1)/3, which is
certainly true. So P(n) holds for the base cases.

INDUCTION STEP: Assume that P({0,...,n — 1}) hold for some arbitrary integer n. I want

to show that this implies P(n). If n < 2 there is nothing to prove, since P(n) was verified
in the base case. Otherwise the IH assumes that P(n — 1) and P(n — 2) are true, so

Jn) = Jn-1)+2J(n—-2) [definition of J(n) when n > 1]
n _ _ n—1 _1\n—2
_ (=1)n -1 +§(2 +(=)") [H for P(n — 1) and P(n — 2)]
n+1 _1\n—2(__
_ 2 ( 1)3 (=1+2) [combine terms]
2n+l + (_1)2(_1)77, B 2n+1 + (_1)n72
3 B 3
Thus P({0,...,n —1}) = P(n), as wanted.

I conclude that P(n) is true for all n € N. Thus J(n) = (2! 4+ (-1)")/3 for all n € N.
QED.

[multiply by 1]

4. HACK SOME ALGEBRA:

(a) The binomial coefficient (Z) is defined for nonnegative integers 0 < &k < n by:

(&)

and it represents the number of ways of choosing k elements from a set of n elements. Use the
definition of (Z) to prove that if 0 < k < n, then:

n\y (n-1 N n—1
k) k k—-1)
PROOF: Suppose k is some arbitrary positive natural number less than n. Thenn -1 > k >
k—12>0, so both (";1) and ("_1) are defined, and we can use the given definition:

k—1
n—1 n—1\ (n—1)! (n—1)! . "
( L ) + (k B 1) RS + o= Di(n —F)1 [by given definition]

(n—Fk)(n—1)!+k(n—1)!

[common denominators]

kEl(n — k)!
~ k(n—k)! ( k) [by given definition]

Since k is an arbitrary positive natural number less than n, this proves the claim. QED.

(b) Prove that if 1 < k < n, then
ke n . n—1
k) \k-1)



PrROOF: Let k be an arbitrary natural number no greater than n, son,k > k—1 > 0, so (Z:i)
is defined, and

n n! . "
k ( k) = km [by given definition]

B n(n — 1)! ..
= G- Dn-1-F 1) [divide by non-zero n and k]

-1
= n (: B 1) [by given definition]

Since k is an arbitrary positive natural number no less than n, this proves the claim. QED.

(c) Suppose z,y € R. Use induction on n and part (a) to prove that:

n
@+y)" =) <Z) gty r.
k=0
CLamM: Let P(n) be “(z +y)" = >p_o (¢)¥y™ *.” Then P(n) is true for all n € N.

PROOF (INDUCTION ON n): If n = 0 then P(n) claims that (z +y)° = 1 = Y p_, (J)2%°,
which is certainly true since z°¢° is 1 for arbitrary real numbers z and y. Thus the base
case holds.

INDUCTION STEP: Assume that P(n) is true for an arbitrary natural number n. I must prove
that this implies P(n + 1). I can re-group (z + y)"*! and use the IH so that

@+y™ = (e+y)) (Z) @y * by IH]
k=0

n

n
= . (7) AR (Z) g*y"F* [use variable j in first sum)

n—1 n
n n : : n n
(O)moyn-Fl + Z ( _>$J+lyn—] + Z <k> :Ekyn_k+1 + <n> 3:"+1y0
= M k=1
- n+ 1 n+1 - n k, n—k+1 - n k, n—k+1 n+ 1 n+1
=i+l = (T o1yt T2 ()7 Tlnr1)®
k=1 k=1
n+1 g™t Xn: n+1 R +1) nn
0 — k n+1

n+l
_ (” + 1) Zhyn ik

k
k=0

Part (a)] =

Thus P(n) = P(n + 1), for an arbitrary natural number n.
I conclude that P(n) is true for every n € N. QED.

(d) Prove that

i k (Z) =n2" 1L
k=0



PROOF: Use the fact that the zeroth term of the sum is zero, and part (b), so

>+()

[part (b)]

[J =k — 1, and part (c)] =

n—1 n—1 ) .
n ( , >111"—1—J =n(1+1)"1

Thus the claim holds for an arbitrary natural number n. QED.

(e) Suppose n is a positive integer. Use the previous parts and some manipulation of the sum to

prove that:

(3 (2)

PRrROOF: Let n be an arbitrary positive integer.

vanishes, and part (b)

>+ (1) () () -

[part (b)] =

[factor out 1/n] =

i=k-1]

[part ()] =

1 n—k
(52
n

Using the fact that the zeroth term of the sum

S0
NEHIONCON
USICECY I

Thus the claim holds for an arbitrary positive integer n. QED.



