QUESTION 1. [15 MARKS]

Recall the base -2 representation of an integer, where $(b_n \cdots b_0)_{-2}$ represents $\sum_{i=0}^n b_i (-2)^i$, and the $b_i \in \{0, 1\}$.

- 1. Which integers (in our usual, base 10 representation) do the following represent? No justification required.
 - (a) $(11111)_{-2} = (11)_{10}$
 - (b) $(101010)_{-2} = (-42)_{10}$

(c)
$$(10101)_{-2} = (21)_{10}$$

(d)
$$(111111)_{-2} = (-21)_{10}$$

2. What is the base -2 representation of the following integers? No justification required.

(a)
$$24 = (1101000)_{-2}$$

- (b) $-15 = (110001)_{-2}$
- (c) $30 = (1100010)_{-2}$

QUESTION 2. [15 MARKS]

Let p(e), q(d), r(x, d), and s(x, e) be unknown predicates, and let K be an unknown domain. Consider statement S1:

 $\mathrm{S1}: \qquad orall e \in K, p(e) \Rightarrow (\exists d \in K, q(d) \land (\forall x \in K, r(x, d) \Rightarrow s(x, d))).$

1. Write a structured proof outline for S1, filling in ":" for the missing parts.

SAMPLE SOLUTION:

Let $e \in K$ Suppose p(e)Let $d_e = \vdots$ (something depending on e). Then $d_e \in K$ Also $q(d_e)$. Let $x \in K$ Suppose $r(x, d_e)$ \vdots (proof that $s(x, d_e)$) Hence $s(x, d_e)$ Since x is an arbitrary real number, $\forall x \in K, r(x, d_e) \Rightarrow s(x, d_e)$ Since $d_e \in K, \exists d_e \in K, q(d) \land (\forall x \in K, r(x, d) \Rightarrow s(x, d_e))$ Hence $p(e) \Rightarrow (\exists d \in K, q(d) \land (\forall x \in K, r(x, d) \Rightarrow s(x, d)))$ Since e is an arbitrary element of $K, \forall e \in K, p(e) \Rightarrow (\exists d \in K, q(d) \land (\forall x \in K, r(x, d) \Rightarrow s(x, d)))$

2. State the negation of S1 in precise notation, moving the negation symbol " \neg " as close as possible to the predicates p, q, r, or s.

SAMPLE SOLUTION:

s(x,d)))

$$\exists e \in K, p(e) \land (orall d \in K,
eg q(d) \lor (\exists x \in K, r(x, d) \land
eg s(x, d)))$$

QUESTION 3. [15 MARKS]

Let $P = \{g : \mathbb{N} \mapsto \mathbb{R}^{\geq 0}\}$ (the set of functions from the natural numbers to the non-negative real numbers). Let $O(f) = \{g \in P | \exists c \in \mathbb{N}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leq cf(n)\}$. Prove or disprove the following:

 $orall f \in P, orall f' \in P, orall g \in P, (f \in O(g) \land f' \in O(g)) \Rightarrow (f+f') \in O(g)$

SAMPLE SOLUTION: The statement is true.

Let $f \in P$. Let $f' \in P$. Let $g \in P$. Assume $f \in O(g) \land f' \in O(g)$.

Then $f \in O(g)$. (By assumption) So $\exists c \in \mathbb{R}^+$, $B \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \geq B \Rightarrow f(n) \leq cg(n)$. (definition of $f \in O(g)$). Let $c_1 \in \mathbb{R}^+$ and $B_1 \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}$, $n \geq B_1 \Rightarrow f(n) \leq c_1g(n)$. Then $f' \in O(g)$. (By assumption). So $\exists c \in \mathbb{R}$, $B \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \geq B \Rightarrow f'(n) \leq cg(n)$. (definition of $f' \in O(g)$). Let $c_2 \in \mathbb{R}^+$, $B_2 \in \mathbb{N}$ be such that $\forall n \in \mathbb{N}$, $n \geq B_2 \Rightarrow f'(n) \leq c_2g(n)$. Let $c' = c_1 + c_2$ and $B' = \max\{B_1, B_2\}$.

Then $c' \in \mathbb{R}^+$. (since the positive real numbers are closed under addition). Then $B' \in \mathbb{N}$. (the maximum of two natural numbers is a natural number). So $\forall n \in \mathbb{N}, n' \geq B \Rightarrow n \geq B_1 \land n \geq B_2$. (since B' is the maximum of B_1 and B_2). So $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq c_1g(n)$. (since $n \geq B'$, by construction of c_1 , and assumption that $f \in O(g)$). So $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f'(n) \leq c_2g(n)$. (since $n \geq B'$, by construction of c_2 , and assumption that $f' \in O(g)$). So $\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) + f'(n) \leq (c_1 + c_2)g(n)$. (adding the last two inequalities). Hence $\forall n \in \mathbb{N}, n \geq B' \Rightarrow (f(n) + f'(n)) \leq c'g(n)$. (By construction of c').

Since $c' \in \mathbb{R}^+$ and $B' \in \mathbb{N}$, $\exists c' \in \mathbb{R}^+$, $\exists B' \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \geq B' \Rightarrow (f(n) + f'(n)) \leq c'g(n)$. So $(f + f') \in O(g)$. (by definition).

So $f \in O(g) \wedge f' \in O(g) \Rightarrow (f + f') \in O(g)$. Since f, f', and g are arbitrary functions in P, $\forall f \in P, \forall f' \in P, \forall g \in P, (f \in O(g) \wedge f' \in O(g)) \Rightarrow (f + f') \in O(g)$.

Total Marks = 45