CSC165 Quiz 6, Thursday July 7th

Name:
Student number:

1. Denote the real numbers by \mathbb{R} and the integers by \mathbb{Z}. For real number x, define $\lfloor x\rfloor$ as the largest integer that is no greater than x. Recall from lecture that an equivalent definition of $\lfloor x\rfloor$ is: $y=\lfloor x\rfloor$ if and only if $y \in \mathbb{Z} \wedge y \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq y)$. Prove that $\forall x \in \mathbb{R},\lfloor x\rfloor>x-1$
SAMPLE SOLUTION:
Let $x \in \mathbb{R}$
Let $y=\lfloor x\rfloor$
Let $z=y+1$
Then $z \in \mathbb{Z}(y \in \mathbb{Z}$ and integers closed under addition).
Also, $z \not \leq y$ (by construction of z)
So $z \not \leq x$ (from the contrapositive of $z \leq x \Rightarrow z \leq y$ in the definition of $\lfloor x\rfloor$)
So $x<z=y+1=\lfloor x\rfloor+1(z \not x x$ means $z>x)$
So $x-1<\lfloor x\rfloor$ (subtracting 1 from both sides of the ineqality).
Since x is an arbitrary element of $\mathbb{R}, \forall x \in \mathbb{R},\lfloor x\rfloor>x-1$.
