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Proof structure
Today we'll discuss various �avours of proof, and how to present them in our structured proof format. After
lecture I'll post Gary Baumgartner's notes summarizing proof structure on the web page as a reference.

Multiple quantifier example

Suppose we have a mystery function f and the following statement (I have added parentheses to indicate
the conventional parsing)

8e 2 R; e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e)))

If we want to prove this true, structure the proof as follows:1
If we want to prove the statement false, we �rst negate it, and then use one of our proof formats (I use

the equivalences :(p) q), (p ^ :q) and :(p ^ q), (p) :q)):
9e 2 R; e > 0 ^ 8d 2 R; d > 0) 9x 2 R; 0 < jx� aj < d ^ jf(x)� lj � e

Of course, this negation involved several applications of rules we already know, and now its proof may
be written step-by-step. In the middle of that proof we had a �^� to prove.

Proving ^
The ^ subproof has the following form:

So, de > 0

Let x 2 R

...

Since x is an arbitrary real number, 8x 2 R; 0 < jx� aj < d) jf(x)� lj < e.
So de > 0 ^ 8x 2 R; 0 < jx� aj < d) jf(x)� lj < e...
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We rolled the conclusion into the statement beginning �Therefore, 9d...� The general form to prove A ^ B
is:

...
Then A.
...
Then B.
Thus A ^B.

Don't let variables introduced while proving A �bleed� over into the proof of B. This tells us how to prove
a bi-implication, since it is just a conjunction of implications. To prove A, B, start from its de�nition:

Then (A) B) ^ (B ) A).
Thus A, B.

Non-boolean function example

Last time we discussed how non-boolean functions cannot take the place of predicates (which are analogous
to boolean functions) in a proof. How should they be used? De�ne bxc : R! R by:

bxc is the largest integer � x.
Now we can form the statement:
Claim 1: 8x 2 R; bxc < x+ 1

It makes sense to apply bxc to elements of our domain, or variables that we have introduced, and to evaluate
it in predicates such as �<� but bxc it self is not a variable, a sentence, nor a predicate. We can't (sensibly)
say 8bxc 2 R or 8x 2 R; bxc_bx+1c. The structure of Claim 1 is a direct proof of a universally-quanti�ed
predicate:2

Since x is an arbitrary element of R, 8x 2 R; bxc < x+ 1

Of course, we need to �ll in the �meat� of the �
...�3

In some cases you need to break down a statement such as �y is the largest integer � x�:
y 2 Z ^ y � x ^ (8z 2 Z; z � x) z � y)

We didn't need the entire de�nition for our proof above, and in practice we don't always have to return
to de�nitions when dealing with functions. For example we may have an existing result, such as:

8x 2 R; bxc > x� 1

Substituting known results

Every proof would become unmanageably long if we had to include �inline� all the results that it depended
on. We inevitably refer to standard results that are either universally known (among math wonks) or can
easily be looked up. Sometimes we need to prove a small technical result in order to prove something larger.
You may view the smaller result as a helper method (usually returning boolean results) that you use to
build a larger method (your bigger proof). To make things modular, you should be able to �call� or refer to
the smaller result. An example occurs if we want to re-cycle
Theorem 1: 8x 2 R; x > 0) 1=(x+ 2) < 3.
We want to use this in proving 8y 2 R; y 6= 0) 1=(y2 + 2) < 3. The template to �ll in is4

Now we have to �ll in the
...5
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Proof by cases

To prove A ) B, it can help to treat some As di�erently than others. For example, to prove that for all
integers x2 + x is even, you might proceed by noting that x2 + x is equivalent to x(x+ 1). At this point our
reasoning has to branch: at least one of the factors x or x + 1 is even (for integer x), but we can't assume
that a particular factor is even for every integer x. So we use proof by cases6

A simple two-case _ can be expressed in �if... else/otherwise...� style

If x is even, then x(x+ 1) is even.
Otherwise, x is odd, so x+ 1 is even, and thus x(x+ 1) is even.

This is a special case of an �OR� clause being the antecedent of an implication. If you want to prove
(A1 _ A2 _ � � �An) ) B, (this could happen if, along the way to proving A ) B you use the fact that
A ) (A1 _ � � �An). Now you need to prove A1 ) B, A2 ) B; � � � ; An ) B. Notice that in setting this up
it is not necessary that the Ai be disjoint (mutually exclusive), just that they cover A (think of A being a
subset of the union of the Ai). One way to generate the cases is to break up the domain D = D1 [ � � � [Dn,
so Ai = Di ^ A. Now you have an equivalence, A , A1 _ � � � _ An. A very common case occurs when the
domain partitions into two parts, D = D1 [ :D1, so you can rewrite A as (A ^D1) _ (A ^ :D1).

Indirect proof

Since p) q is equivalent to its contrapositive, :q ) p, proving the latter proves the former. This is called
an �indirect proof.� The outline format of an indirect proof of 8x 2 D; p(x)) q(x) is7

As an exercise, consider 8x 2 Z; if x2 is odd, then x is odd.
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Notes
1Let e 2 R.

Assume e > 0

Let de =(something helpful)
Then de 2 R.

Also de > 0.
Let x 2 R.

Assume 0 < jx� aj < de
...

So jf(x)� lj < e
Hence 0 < jx� aj < de ) (jf(x)� lj < e)

Since x is an arbitrary element of R, 8x 2 R; 0 < jx�aj < de ) (jf(x)� lj <
e)

Thus 9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e))

Then, e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e)))

Since e is an arbitrary element of R,

8e 2 R; e > 0) (9d 2 R; d > 0 ^ (8x 2 R; 0 < jx� aj < d) (jf(x)� lj < e)))

2Let x 2 R

...

Then bxc < x+ 1

Since x is an arbitrary element of R, 8x 2 R; bxc < x+ 1.

3Let x 2 R

Let y = bxc
Then y is the largest integer � x (de�nition of �oor)
So y � x and x < x+ 1 (adding 1 to both sides of an inequality)
So y < x+ 1

So bxc < x+ 1

Since x was an arbitrary element of R, 8x 2 R; bxc < x+ 1.

4Let y 2 R
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Assume y 6= 0

...
Hence 1=(y2 + 2) < 3.

Thus y 6= 0) 1=(y2 + 2) < 3.

Since y is an arbitrary element of R, 8y 2 R; y 6= 0) 1=(y2 + 2) < 3.

5Let y 2 R.

Assume y 6= 0

Then y2 2 R and y2 � 0 (true for all elements of R).
So y2 > 0, since y2 6= 0 and y2 � 0. (Only real number whose square is 0 is 0)
So, by Theorem 1, 1=(y2 + 2) < 3.
Hence y 6= 0) 1=(y2 + 2) < 3

Since y is an arbitrary element of R, 8y 2 R; y 6= 0) 1=(y2 + 2) < 3

6Let x 2 Z

Case 1: x is even

Then x(x+ 1) is even

Case 2: x is odd

Then x+ 1 is even
So x(x+ 1) is even

Since x is either even or odd, x(x+ 1) is even in all cases.

Since x is an arbitrary element of Z, 8x 2 Z; x(x+ 1) is even.

7Let x 2 D

Suppose :q(x)

...
Then :p(x)

Then p(x)) q(x)

Since x is an arbitrary element of D, 8x 2 D; p(x)) q(x).
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