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Proliferating domains
Multiple quanti�cation taxes our picture-drawing skills. For example, we started last lecture with domains E
(for employees) and N (natural number), and we had predicates f(e) (employee is female), s(e; k) (employee
makes salary k) and k > 25; 000. If we wanted to guide our thinking with a detailed drawing, we would have
to think of our predicates as being in the domain E �N � the Cartesian product of E and N, de�ned as
the set of ordered pairs (e; n), where e 2 E and n 2 N. A trivial change to our predicate can make them
arti�cially take pairs as arguments: f(e; k) means e is female, regardless of k, and (e; k) > 25; 000 means.
So now the sentence 9e;9k; f(e; k)^ s(e; k)^ (e; k) > 25; 000 simply means that the intersection of the three
sets in E �N is non-empty.

If we take the Cartesian product of two sets, then we can think of the sets as axes of the two-dimensional
plane and make another sort of drawing. From this point of view, the claim 8x 2 D1; 9y 2 D2; P (x; y) says
that there is a graph of some function in from D1 to D2 that is contained in the set that satis�es P (x; y).
On the other hand 9y; 8x; P (x; y) says that there is a constant function from D1 to D2 that is contained
in the set that satis�es P (x; y). You may need to extend the usual conventions of diagrams to guide your
thinking when reasoning about domains.

Transitivity of implication
Consider (P (x) ) Q(x)) ^ (Q(x) ) R(x)) (I have put the parentheses to make it explicit that the im-
plications are considered before the ^). What does this statement imply if considered in terms of sets
P , Q, and R?1 We can also work this out using the logical arithmetic we introduced last week: write
:(((P (x) ) Q(x)) ^ (Q(x) ) R(x))) ) (Q(x) ) R(x))) using only _;^; and :, and show that it is a
contradiction (never true). Use DeMorgan's law, the distributive laws, and anything else that comes to
mind. Thus, implication is transitive.

A similar transformation is that P (x)) (Q(x)) R(x)) is equivalent to (P (x) ^Q(x))) R(x). Notice
this is stronger than the previous result (an equivalence rather than an implication).
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Proofs
We want to make convincing arguments that a statement is true. We're allowed (forced, actually) to use
previously proven statements and axioms (things that are de�ned to be true, or assumed to be true, for
the domain). For example, if D is the real numbers, then we have plenty of rules about arithmetic and
inequalities.

Setting up direct proof of implication
Consider implications of the form

c1: 8x 2 D; p(x)) q(x)

Many already-known-to-be-true statements are universally quanti�ed implications like c1. We'd like to �nd
among them a chain:

c2.0: 8x 2 D; p(x)) r1(x)

c2.1: 8x 2 D; r1(x)) r2(x)

...

c2.n: 8x 2 D; rn(x)) q(x)

This, in n steps, proves c1, using the transitivity of implication. A more �exible way to summarize that
the chain c2.0...c2.n prove c1 is to cite the intermediate implications that justify each intermediate step.
Here you write the proof that p(x)) q(x) as

Let x 2 D be such that p(x)

Then r1(x) (by c2.0)
So r2(x) (by c2.1)
...
So q(x) (by c2.n)

Thus p(x)) q(x).

This form emphasizes what each existing result adds to our understanding. And when it's obvious which
result was used, we can just avoid mentioning it (but be careful, one person's obvious is another's mystery).

Although this form seems to talk about just one particular x, by not assuming anything more than x 2 D
and p(x), it applies to every x 2 D with p(x).

Hunting the elusive direct proof
In general, the di�culty with direct proof is there are lots of known results to consider. The fact that a
result is true may not help your particular line of argument (there are many, many, true but irrelevant facts).
In practice, to �nd a chain from p(x) to q(x), you gather two lists of results about x:

1. results that p(x) implies, and

2. results that imply q(x)
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Your fervent hope is that some result appears on both lists.

p(x)

r1(x)

r2(x)
...
s2(x)

s1(x)

q(x)

Anything that one of the ri implies can be added to the �rst list. Anything that implies one of the si can
be added to the second list. What does this look like in pictures?

In Venn diagrams we can think of the ri as sets that contain p but may not be contained in q (the ones
that don't are dead ends). On the other hand, the si are contained in q but may not contain p (the ones
that don't are dead ends). We hope to �nd a patch of containment from p to q. Another way to visualize
this is by having the ri represented as a tree. In one tree we have root p, with children being the ri that p
implies, and their children being results they imply. In a second tree we have root q, with children being
the results that imply q, and their children being results that imply them. If the two trees have a common
node, we have a chain.

Are you done when you �nd a chain? No, you write it up, tidying as you go. Remove the results that
don't contribute to the �nal chain, and cite the results that take you to each intermediate link in the chain.

What do ^ and _ do?
Now your two lists have the form

8x 2 D; p(x)) (r1(x) ^ r2(x) � � � rm(x))

8x 2 D; (sk(x) _ � � � _ s1(x))) q(x)

Since p(x) implies any �and� of the ri, you can just collect them in your head until you �nd a known
result, say r1(x) ^ r2(x) ) rk(x), and then add rk(x) to the list. On the other hand, if you have a result
on the �rst list of the form r1(x) ^ r2(x), you can add them separately to the list. On the second list,
use the same approach but substitute _ for ^. Any result on the �rst list can be spuriously �or'ed� with
anything: r1(x)) (r1(x)_ l(x)) is always true. On the second list, we can spuriously �and� anything, since
(s1(x) ^ l(x))! s1(x).

If we have a disjunction r1(x)_r2(x) on the �rst list, we can use it if we have a result that (r1(x)_r2(x)))
q(x), or the pair of results r1(x)) q(x), and r2(x)) q(x).

An odd example
Suppose you are asked to prove that every odd natural number has a square that is odd. You can start by
writing the outline of the proof you would like to have:

Let n 2 N, and n is odd.
...
So n2 is odd.
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Thus 8n 2 N, n odd ) n2 odd.

Start scratching away at both ends of the
... (the bit that represents the chain of results we need to �ll in).

What does it mean for n2 to be odd? Well, if there is a natural number k such that n2 = 2k + 1, then n2

is odd (by de�nition of odd numbers). Add that to the end of the list. Similarly, if n is odd, then there
is a natural number j such that n = 2j + 1 (by de�nition of odd numbers). It seem unpromising to take
the square root of 2k + 1, so why not carry out the almost-automatic squaring of 2j + 1? So now, on our
�rst list, we have that, for some natural number j, n2 = 4j2 + 2j + 1. Using some algebra (distributivity of
multiplication over addition), this means that for some natural number j, n2 = 2(2j2 + j) + 1. If we let k
from our second list be 2j2 + j, then we certainly satisfy the restriction that k be a natural number (they
are closed under multiplication and addition), and we have linked the �rst list to the second:2

How about the converse, 8n 2 N; if n2 is odd, then n is odd. If we try creating a chain, it seems a bit
as though the natural direction is wrong: somehow we'd like to go from q back to p. What equivalent of an
implication allows us to do this?3

We can set this up similarly, assuming the negation of our consequent (i.e that n is even), and trying to
chain to the negation of our antecedent (i.e. that n2 is even).
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Notes
1It implies that P is a subset of R, since P � Q and Q � R. It is not equivalent, since you can certainly

have P � R without P � Q or R � Q.
2Let n 2 N, and n is odd.

Then, for some j 2 N, n = 2j + 1 (de�nition of odd number).

So n2 = 4j2 + 2j + 1 (de�nition of squaring a number)
So n2 = 2(2j2 + j) + 1 (distributive law)
So there exists a natural number k = 2j2 + j such that n2 = 2k+1. (N is closed under
addition and multiplication)
So n2 is odd.

Thus 8n 2 N, n odd ) n2 odd.

3The contrapositive.
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