# CSC165 Quiz 10, Thursday August 11th 

Name:
Student number:

Suppose you have a floating-point representation that has $\beta=10$ (base, or radix, 10 ), $t=5$ digits, and $e \in\{-5,5\}$. Thus a number is represented as $d_{0} \cdot d_{1} d_{2} d_{3} d_{4} \times 10^{e}$, where $d_{0} \neq 0, d_{i} \in\{0, \ldots, 9\}$, and $e \in\{-5, \ldots, 5\}$. . Suppose $x$ and $y$ are non-zero numbers that are represented by $x^{\prime}$ and $y^{\prime}$ (respectively) without overflow in your representation, using round-to-nearest. In the questions below, you may express your result as a fraction, or use a calculator.

1. What is the largest possible relative error, $\left|x-x^{\prime}\right| /|x|$. Explain your answer.

In Annie Yuk's tutorial, the word "largest" was spelled "smallest," so the answer was 0 (if $x$ could be perfectly represented as $x^{\prime}$ ).
Otherwise, The smallest numerator, for a given exponent $e$, is $x \geq 1.0000 \times 10^{e}$. Since $x$ is rounded to the nearest value, it differs from $x^{\prime}$ by, at most, half the increment of the last digit, or $0.0001 \times 10^{e} / 2$ $=10^{e-4} / 2$. This means that the relative error is, at most, $10^{-4} / 2$, or $.005 \%$.
2. If $x=3.0000500000$ and $y=3.0000499999$, what is the relative error $\left|(x-y)-\left(x^{\prime}-y^{\prime}\right)\right| /|x-y|$ ? Show your work.
$x^{\prime}$ rounds up $x$, so $x^{\prime}=3.0001, y^{\prime}$ rounds down $y$, so $y^{\prime}=3.0000$, so $x^{\prime}-y^{\prime}=0.0001$, whereas $x-y$ $=0.0000000001$, so the relative error is

$$
\frac{|0.0000000001-0.0001|}{|0.0000000001|}=999999=99999900 \%
$$

3. What is the relative error if, in the previous part, we increase precision from $t=5$ to $t=8$ digits? Show your work.
In this case $x^{\prime}$ represents $x$ perfectly, so $x^{\prime}=3.0000500$, while $y^{\prime}$ rounds $y$ up, so $y^{\prime}=3.0000500$. Thus, $x^{\prime}-y^{\prime}=0.0000000$, and the relative error is

$$
\frac{|0.0000000001|}{|0.0000000001|}=1=100 \%
$$

