
CSC165H, Mathematical expression and reasoning
for computer science

week 11

4th August 2005

Gary Baumgartner and Danny Heap
heap@cs.toronto.edu
SF4306A
416-978-5899
http://www.cs.toronto.edu/~heap/165/S2005/index.shtml

Insertion sort example
Here is an intuitive,1 sorting algorithm

// A is an array of comparable elements
// that will be rearranged (sorted) in non-decreasing order
IS(A)
1. i = 1;
2. while (i < A.length) {
3. t = A[i];
4. j = i;
5. while (j>0 && A[j-1]>5) {
6. A[j] = A[j-1];
7. j = j-1;
8. }
9. A[j] = t;
10. i = i+1;
11. }

Since we last computed running time, we got lazier. We could use the list from last
week of the number of steps, and we'd �nd that there are between 3 and 11 steps for the

1



lines in the program above. Since we are interested in big-O comparisons, that four-fold
di�erence in steps will be absorbed into our multiplicative constants, so a better use of
our time would be to count each line as one step.

Let's �nd an upper bound for TIS(n), the maximum number of steps to InsertionSort
an array of size n. We'll use the proof format to prove and �nd the bound simultaneously
� during the course of the proof we can �ll in the necessary values for c and B.

Proof that TIS(n) 2 O(n2) (where n = A:length).
Let c =??. Let B =???.

Then c 2 R+ and B 2 N.
Let n 2 N, and let A be an array of length n, and assume n � B.

So lines 5�7 execute at most n times, for n steps, plus 1 step for the
last loop test.
So lines 2�11 take no more than n2 + 5n+ 1 steps.
So n2 + 5n+ 1 � cn2 (�ll in the values of c and B that makes this
so � c = B = 6 should do).

So n � B ) TIS(n) � cn2.
Since n is the length of an arbitrary array A and a natural number, N,
8n 2 N; n � B ) TISn � cn2 (so long as B � 1).

Since c is a positive real number and B is a natural number,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) TIS(n) � cn2.
So TIS 2 O(n)2. (by de�nition of O(n2)).

Similarly, we prove a lower bound

TIS 2 
(n2)
Let c =?. Let B =??.

Then c 2 R+ and B 2 N.
Let n 2 N, and let A = [n� 1; : : : ; 1; 0] (notice that this means n � 1).
Assume n � B.

Note that at any point during the outside loop, A[0::(i� 1)]
contains the same elements as before but sorted (i.e., no element
from A[(i+ 1)::(n� 1)] has been examined yet). Since the value A[i]
is less than all the values A[0..(i-1)], by construction of the array,
the inner while loop makes i iterations, at a cost of 3 steps per
iteration, plus 1 for the �nal loop check. This is strictly greater

2



than 2i+ 1, so (since the outer loop varies from i = 1::i = n� 1 and
we have n� 1 iterations of lines 3 and 4, plus one iteration of line
1), we have that tIS(n) � 1 + 3 + 5 + � � �+ 2n� 1 + 2n+ 1 = n2 (the
sum of the �rst n odd numbers.

So n � B ) Tis(n) � cn2 (B = c = 1 will do).
So there is some array A of size n such that tIS(A) � cn2.
Since n was an arbitrary natural number, 8n 2 N; n � B ) TIS(n) � cn2

Since c 2 R+ and B is a natural number,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) TIS(n) � cn2.
So TIS 2 
(n2) (de�nition of 
(n2)).

Floating-point systems
We can't represent every real number on a computer. We use ��oating-point system�
instead � given a �xed �, �xed number of digits t, and a range [emin; emax] of exponents
(integers), we can represent only numbers of the form:

�d0d1 : : : dt�1 � �e;
. . . where the di 2 [0; � � 1] are called the digits (and the sequence of digits is called the
mantissa), and e 2 [emax; emin] is the exponent. (there's also a sign, costing at least a bit).

Here's an example. If � = 10, t = 3, emin = �4, and emax = +4, then you can represent
1=4 as +0:25 � 100 or +2:5 � 10�1. You can represent 1=3 as +3:33 � 10�1. (Note that
+0:33 � 100 loses one digit of precision). Notice that there are multiple representations,
so we agree on a normalized mantissa: require that the �rst digit d0 6= 0 unless we are
representing 0 itself.

Using this normalized �oating-point system:

� The smallest positive number is +1:00� 10�4 = 0:0001.

� The largest positive number is +9:99� 104 = 99900.

Another example. Suppose � = 2, t = 3, emin = �2, emax = +3. Numbers (other than
0) have the form

�1:d1d2 � 2e:

� Smallest positive number: (1:00)2 � 2�2 = 1=4.

� Largest positive number: (1:11)2 � 23 = 14.

3



Draw these out on a number line, and note that the larger numbers are spaced further
apart, since a di�erence of 1 in the last digit represents a larger magnitude when the
exponent is larger). For example, (1:01)2� 2�1� (1:00)2� 2�1 = 1=8, versus (1:01)2� 22�
(1:00)2 � 22 = 1. However, the percentage remains constant:

1=8
2�1 = 1=4 =

1
22 :

Rounding
Most numbers are not exactly representable in a �oating-point system using a given base
�. For example, when � = 10, you cannot represent 1=3 exactly (no matter how large t
is), so we used 3:33� 10�1 when t = 3. What should we do with something like the base
of natural logarithms, e = 2:718281828 : : :? Two approaches are used:

� Round to nearest: 2:72� 100.

� Truncate to zero: 2:71� 100.

Overflow
There is no way to represent a number larger than the largest �oating-point number. In
our �rst example, there is no way to represent 99901 or greater.

Underflow
There is no way to represent a positive number smaller than the smallest positive �oating-
point number. In our �rst example, there is no way to represent 0:00001 (or a smaller
positive number).

Absolute rounding error
We can calculate the di�erence between the true value we're trying to represent and
the value of its �oating-point representation. For example, the absolute error in our
representation of e is j2:71� 2:718281828 : : : j = j0:008281828 : : : j.

Relative error
100 and 100.1 are �closer� than 1 and 1.1, even though the absolute di�erence is 0.1 in
both cases. Look at the size of the error in terms of the size of the value being represented.

4



Relative error: For x 6= 0, the relative error between the approximate value x0 and the
�real� value x is jx� x0j

jxj
For example, j1:1 � 1j=j1:1j = 0:0909 � 9%. However, j100:1 � 100j=j100j = 0:000999

� 0:09%.

Relative error in round-to-nearest
When we round numbers to represent them in a �oating-point system, can we bound
relative error for positive numbers with no over�ow or under�ow? (In fact, with over�ow
or under�ow, the error can be arbitrarily large).

5



Notes
1but not particularly e�cient...

6


