CSC165H, Mathematical expression and reasoning for computer science week 11

4th August 2005

Gary Baumgartner and Danny Heap
heap@cs.toronto.edu
SF4306A
$416-978-5899$
http://www.cs.toronto.edu/ ${ }^{\text {heap }} / 165 /$ S2005/index.shtml

Insertion sort example

Here is an intuitive, ${ }^{1}$ sorting algorithm
// A is an array of comparable elements
// that will be rearranged (sorted) in non-decreasing order
IS(A)

1. $\mathrm{i}=1$;
2. while (i < A.length) \{
3. $\quad \mathrm{t}=\mathrm{A}[\mathrm{i}]$;
4. $\mathrm{j}=\mathrm{i}$;
5. while $(j>0 \& \& A[j-1]>5)\{$
6. $A[j]=A[j-1]$;
7. $\quad j=j-1$;
8. \}
9. $\mathrm{A}[\mathrm{j}]=\mathrm{t}$;
10. $\mathrm{i}=\mathrm{i}+1$;
11. $\}$

Since we last computed running time, we got lazier. We could use the list from last week of the number of steps, and we'd find that there are between 3 and 11 steps for the
lines in the program above. Since we are interested in big-O comparisons, that four-fold difference in steps will be absorbed into our multiplicative constants, so a better use of our time would be to count each line as one step.

Let's find an upper bound for $T_{I S}(n)$, the maximum number of steps to InsertionSort an array of size n. We'll use the proof format to prove and find the bound simultaneously - during the course of the proof we can fill in the necessary values for c and B.

Proof that $T_{I S}(n) \in O\left(n^{2}\right)$ (where $n=$ A.length).
Let $c=$??. Let $B=$???.
Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Let $n \in \mathbb{N}$, and let A be an array of length n, and assume $n \geq B$.
So lines 5-7 execute at most n times, for n steps, plus 1 step for the last loop test.
So lines $2-11$ take no more than $n^{2}+5 n+1$ steps.
So $n^{2}+5 n+1 \leq c n^{2}$ (fill in the values of c and B that makes this so $-c=B=6$ should do).

So $n \geq B \Rightarrow T_{I S}(n) \leq c n^{2}$.
Since n is the length of an arbitrary array A and a natural number, \mathbb{N}, $\forall n \in \mathbb{N}, n \geq B \Rightarrow T_{I} S n \leq c n^{2}$ (so long as $B \geq 1$).

Since c is a positive real number and B is a natural number,
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T_{I S}(n) \leq c n^{2}$.
So $T_{I S} \in O(n)^{2}$. (by definition of $O\left(n^{2}\right)$).
Similarly, we prove a lower bound
$T_{I S} \in \Omega\left(n^{2}\right)$
Let $c=$?. Let $B=$??.
Then $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Let $n \in \mathbb{N}$, and let $A=[n-1, \ldots, 1,0]$ (notice that this means $n \geq 1$). Assume $n \geq B$.

Note that at any point during the outside loop, $A[0 . .(i-1)]$ contains the same elements as before but sorted (i.e., no element from $A[(i+1) . .(n-1)]$ has been examined yet). Since the value A[i] is less than all the values $\mathrm{A}[0 . .(\mathrm{i}-1)]$, by construction of the array, the inner while loop makes i iterations, at a cost of 3 steps per iteration, plus 1 for the final loop check. This is strictly greater
than $2 i+1$, so (since the outer loop varies from $i=1 . . i=n-1$ and we have $n-1$ iterations of lines 3 and 4 , plus one iteration of line 1), we have that $t_{I S}(n) \geq 1+3+5+\cdots+2 n-1+2 n+1=n^{2}$ (the sum of the first n odd numbers.

So $n \geq B \Rightarrow T_{i s}(n) \geq c n^{2}(B=c=1$ will do).
So there is some array A of size n such that $t_{I S}(A) \geq c n^{2}$.
Since n was an arbitrary natural number, $\forall n \in \mathbb{N}, n \geq B \Rightarrow T_{I S}(n) \geq c n^{2}$
Since $c \in \mathbb{R}^{+}$and B is a natural number,
$\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow T_{I S}(n) \geq c n^{2}$.
So $T_{I S} \in \Omega\left(n^{2}\right)$ (definition of $\Omega\left(n^{2}\right)$).

FLOATING-POINT SYSTEMS

We can't represent every real number on a computer. We use "floating-point system" instead - given a fixed β, fixed number of digits t, and a range $\left[e_{\min }, e_{\max }\right.$] of exponents (integers), we can represent only numbers of the form:

$$
\pm d_{0} d_{1} \ldots d_{t-1} \times \beta^{e}
$$

\ldots where the $d_{i} \in[0, \beta-1]$ are called the digits (and the sequence of digits is called the mantissa), and $e \in\left[e_{\max }, e_{\min }\right]$ is the exponent. (there's also a sign, costing at least a bit).

Here's an example. If $\beta=10, t=3, e_{\min }=-4$, and $e_{\max }=+4$, then you can represent $1 / 4$ as $+0.25 \times 10^{0}$ or $+2.5 \times 10^{-1}$. You can represent $1 / 3$ as $+3.33 \times 10^{-1}$. (Note that $+0.33 \times 10^{0}$ loses one digit of precision). Notice that there are multiple representations, so we agree on a NORMALIZED mantissa: require that the first digit $d_{0} \neq 0$ unless we are representing 0 itself.

Using this normalized floating-point system:

- The smallest positive number is $+1.00 \times 10^{-4}=0.0001$.
- The largest positive number is $+9.99 \times 10^{4}=99900$.

Another example. Suppose $\beta=2, t=3, e_{\min }=-2, e_{\max }=+3$. Numbers (other than 0) have the form

$$
\pm 1 . d_{1} d_{2} \times 2^{e}
$$

- Smallest positive number: $(1.00)_{2} \times 2^{-2}=1 / 4$.
- Largest positive number: $(1.11)_{2} \times 2^{3}=14$.

Draw these out on a number line, and note that the larger numbers are spaced further apart, since a difference of 1 in the last digit represents a larger magnitude when the exponent is larger). For example, $(1.01)_{2} \times 2^{-1}-(1.00)_{2} \times 2^{-1}=1 / 8$, versus $(1.01)_{2} \times 2^{2}-$ $(1.00)_{2} \times 2^{2}=1$. However, the percentage remains constant:

$$
\frac{1 / 8}{2^{-1}}=1 / 4=\frac{1}{2^{2}} .
$$

Rounding

Most numbers are not exactly representable in a floating-point system using a given base β. For example, when $\beta=10$, you cannot represent $1 / 3$ exactly (no matter how large t is), so we used 3.33×10^{-1} when $t=3$. What should we do with something like the base of natural logarithms, $e=2.718281828 \ldots$? Two approaches are used:

- Round to nearest: 2.72×10^{0}.
- Truncate to zero: $2.71 \times 10^{\circ}$.

Overflow

There is no way to represent a number larger than the largest floating-point number. In our first example, there is no way to represent 99901 or greater.

Underflow

There is no way to represent a positive number smaller than the smallest positive floatingpoint number. In our first example, there is no way to represent 0.00001 (or a smaller positive number).

Absolute rounding error

We can calculate the difference between the true value we're trying to represent and the value of its floating-point representation. For example, the absolute error in our representation of e is $|2.71-2.718281828 \ldots|=|0.008281828 \ldots|$.

RELATIVE ERROR

100 and 100.1 are "closer" than 1 and 1.1 , even though the absolute difference is 0.1 in both cases. Look at the size of the error in terms of the size of the value being represented.

Relative error: For $x \neq 0$, the relative error between the approximate value x^{\prime} and the "real" value x is

$$
\frac{\left|x-x^{\prime}\right|}{|x|}
$$

For example, $|1.1-1| /|1.1|=0.0909 \approx 9 \%$. However, $|100.1-100| /|100|=0.000999$ $\approx 0.09 \%$.

RELATIVE ERROR IN ROUND-TO-NEAREST

When we round numbers to represent them in a floating-point system, can we bound relative error for positive numbers with no overflow or underflow? (In fact, with overflow or underflow, the error can be arbitrarily large).

Notes

${ }^{1}$ but not particularly efficient...

