
CSC165H, Mathematical expression and reasoning
for computer science

week 10

17th November 2005

Gary Baumgartner and Danny Heap
heap@cs.toronto.edu
SF4306A
416-978-5899
http://www.cs.toronto.edu/~heap/165/S2005/index.shtml

More theorems
To show that (f 2 O(g) ^ g 2 O(h))) f 2 O(h), we need to �nd a constant c 2 R+ and
a constant B 2 N, that satisfy:

8n 2 N; n � B ) f(n) � ch(n):

Since we have constants that scale h to g and then g to f , it seems clear that we need
their product to scale g to f . And if we take the maximum of the two starting points, we
can't go wrong. Making this precise.

Theorem 1:
Assume f 2 O(g) ^ g 2 O(h).

So f 2 O(g).
So g 2 O(h).
So 9c 2 R+;9B 2 N;8n 2 N; n > B ) f(n) � cg(n). (by defn. of f 2 O(g)).
Let cg 2 R+; Bg 2 N be such that 8n 2 N; n � B ) f(n) � cgg(n).
So 9c 2 R+;9B 2 N;8n 2 N; n � B ) g(n) � ch(n). (by defn. of g 2 O(h)).

1



Let ch 2 R+; Bh 2 N be such that 8n 2 N; n � Bh ) g(n) � chh(n).
Let c = cgch. Let B = max(Bg; Bh).

Let n 2 N.
Suppose n � B.

Then n � Bh (de�nition of max), so g(n) � chh(n).
Then n � Bg (de�nition of max), so
f(n) � cgg(n) � cgchh(n).
So f(n) � ch(n).

So n � B ) f(n) � ch(n).
Since n is an arbitrary natural number,
8n 2 N; n � B ) f(n) � ch(n).

Since c is a positive real number, since B is a natural number,
9c 2 R+;9B 2 N;8n 2 N; n � B ) f(n) � ch(n).
So f 2 O(g), by de�nition.

So (f 2 O(g) ^ g 2 O(h))) f 2 O(g)

To show that g 2 
(f) , f 2 O(g), it is enough to note the the constant, c, for one
direction is positive, so its reciprocal will work for the other direction.1

Theorem 2:
g 2 
(f)
, (de�nition)
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) g(n) � cf(n)
,. (by letting c0 = 1=c and B0 = B).
9c0 2 R+;9B0 2 N;8n 2 N; n � B ) f(n) � c0g(n).
, (de�nition)
f 2 O(g).

To show g 2 �(f), g 2 O(f) ^ g 2 
(f), it's really just a matter of unwrapping the
de�nitions.

Theorem 3:

g 2 �(f)
, (de�nition)
9c1; c2 2 R+; B 2 N;8n 2 N; n � B ! c1f(n) � g(n) � c2f(n).

2



, (combined inequality, and B = max(B1; B2)).
9c1 2 R+;9B1 2 N;8n 2 N; n � B1 ) g(n) � c1f(n) ^
9c2 2 R+;9B2 2 N;8n 2 N; n � B2 ) g(n) � c2f(n)
, (de�nition)
g 2 
(f) ^ g 2 O(f).

Taxonomy of results
A lemma is a small result needed to prove something we really care about. A theorem is
the main result that we care about (at the moment). A corollary is an easy (or said to be
easy) consequence of another result. A conjecture is something suspected to be true, but
not yet proven.

Here's an example of a conjecture whose proof has evaded the best minds for over 70
years. Maybe you'll prove it.

De�ne f(n), for n 2 N by:

f(n) =

8<:n=2; n even
3n+ 1; n odd

Let's call f(f(n)) f2(n), and f(fk(n)) fk+1(n). Here's the conjecture: 8n 2 N;9k 2
N; fk(n) = 1. Easy to state, but (so far) hard to prove or disprove.

Here's an example of a corollary that recycles some of the theorems we've already
proven (so we don't have to do the grubby work). To show g 2 �(f), f 2 �(g), I re-use
theorems proved above and the commutativity of ^:
g 2 �(f)
, (by Theorem 3)
g 2 O(f) ^ g 2 
(f).
, (by Theorem 2)
g 2 O(f) ^ f 2 O(g)
, (by commutativity of ^)
f 2 O(g) ^ g 2 O(f)
, (by Theorem 2)
f 2 O(g) ^ f 2 
(g)
, (by Theorem 3)
f 2 �(g).

3



Running time of programs
For any program P and any input x, let tP (x) denote the number of �steps� P takes on
input x. We need to specify what we mean by a �step.� Consider the following (somewhat
arbitrary) accounting for common program steps:

method call: 1 step + steps to evaluate each argument, + steps to execute the method.

return statement: 1 step + steps to evaluate return value.

if statement: 1 step + steps to evaluate condition

assignment statement: 1 + steps to evaluate each side

arithmetic, comparison, boolean operators: 1 + steps to evaluate each operand.

array access: 1 + steps to evaluate index

member access: 2 steps

constant, variable evaluation: 1 step

Example: Linear Search

// A is an array, x is an element to search for.
// Return an index i such that A[i] = x
// if there is no such index, return �1
// Convention: array indices start at 0

LS (A,x)
1. i = 0; // 3 steps (evaluate variable, constant, assignment)
2. while (i < A.length) { // 5 steps (while, A.length (2), i, <)
3. if (A[i] == x) { // 5 steps (A[i], ==, x, if)
4. return i; // 2 steps (return, i)
5. }
6. i = i+1; // 5 steps (i, assignment, i, +, 1)
7. }
8. return -1; // 2 steps (return, �1)
9. }

Let's trace a function call, tLS([2; 4; 6; 8]; 4):

1. 3 steps (i=0)

4



2. 5 steps (0 < 4)

3. 5 steps (A[0] == 4)

6. 5 steps (i = 1)

2. 5 steps (1 < 4)

3. 5 steps (A[1] == 4)

4. 2 (return 1)

So tLS([2; 4; 6; 8]; 4) = 30. Notice that if the �rst index where x is found is j, then
tLS(A; x) will count lines 2, 3, and 6 for each index from 0 to j � 1 (j indices), and then
count lines 2,3,4 when for index j, and so tLS(A; x) will be 3 + 15j + 12 = 15(j + 1).

If x doesn't appear in A, then tLS(A; x) = 3 + 15A:length + 7 = 15A:length + 10,
because line 1 executes once, lines 2,3, and 6 execute for each index from 0 to A:length�1
(A.length indices), and then lines 2 and 8 execute.

We want a measure that depends on the size of the input, not the particular input.
There are three standard ways:

Best-case complexity: min(tp(x)), where x is an input of size n. In other words,
minftp(x)jx 2 I ^ size(x) = ng.

Worst-case complexity: max(tp(x)), where x is an input of size n. In other words,
maxftp(x)jx 2 I ^ size(x) = ng.

Average-case complexity (assuming all inputs equally likely):

Ap(n) =
P
x of size n tp(x)

number of inputs of size n

Best-case: useless. Average-case: di�cult to compute. Worst-case: easier to compute,
and gives a guarantee.

What is meant by �input size�? This depends on the algorithm. For linear search, the
number of elements in the array is a reasonable parameter. Technically (CSC363, etc.)
the size is the number of bits required to represent the input in binary. In practice we use
the number of elements of input (length of array, number of nodes in a tree, etc.)

Best-case for linear search?2 Worst-case for linear search?3 Average-case for linear
search?4 Now we can use the machinery of big-Oh. Suppose U is an upper bound on the
worst-case running time of some algorithm P , denoted TP (n):

5



tP 2 O(U)
,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) TP (n) � cU(n)
,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) maxftp(x)jx 2 I ^ size(x) = ng � cU(n)
,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 8x 2 I; size(x) = n) tp(x) � cU(n)
,
9c 2 R+; 9B 2 N; 8x 2 I; size(x) � B ) tp(x) � cU(size(x))

(I is the set of all inputs for P ). So to show that TP 2 O(U(n)), you need to �nd constants
c and B and show that for an arbitrary input x of size n, P takes at most cU(n) steps.

In the other direction, L is a lower bound on the worst-case running time of algorithm
P :

TP 2 
(L)
,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) maxftp(x)jx 2 I ^ size(x) = ng � cL(n)
,
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 9x 2 I; size(x) = n ^ tp(x) � cL(n)

So, to prove that Tp 2 
(L), we have to �nd constants c, B and for arbitrary n, �nd
an input x of size n, for which we can show that P takes at least cL(n) steps on input x

6



Notes

1Let's try the symmetrical presentation of bi-implication.

215 steps, when A[0] == x.

315n+ 10, where n = A:length.

4Inputs at index 0 through n � 1, plus missing value equally likely (n + 1) input
categories, so�Pn�1

i=0 15(i+ 1)
�

+ 15n+ 10
n+ 1

=
15n(n+ 1)=2 + 15n+ 10

n+ 1

=
7:5n(n+ 1) + 15n+ 10

n+ 1

=
7:5n(n+ 1) + 15n+ 10

n+ 1
= 7:5n+

15n+ 10
n+ 1

:

7


