CSC165 Quiz 8, Thursday July 21st

Name:
Student number:

Prove or disprove, using our formatted proof structure, and the definition of big-Oh from class, ${ }^{1}$ the following claim:

$$
\left(7 n^{3}+11 n^{2}+n\right) \in O\left(n^{3}\right)
$$

Sample solution: The claim is true.
Let $c=8$. Let $B=12$.

Then c is a positive real number and B is a natural number.
Let $n \in \mathbb{N}$. Assume $n \geq B$.
Then $n^{3}=n \times n^{2} \geq 12 \times n^{2}=11 \times n^{2}+n^{2}$. (since $n \geq B=12$).
So $n^{2} \geq 12 n$. (since $n \geq 12$, multiplying both sides by $n>0$).
So $12>1 \Rightarrow 12 n>n$. (Multiplying both sides by $n>0$).
So $n^{3} \geq 12 n^{2}=11 n^{2}+n^{2} \geq 11 n^{2}+12 n \geq 11 n^{2}+n$.
So $7 n^{3} \geq 7 n^{3}$.
Thus $c n^{3}=8 n^{3}=7 n^{3}+n^{3} \geq 7 n^{3}+11 n^{2}+n$. (adding the two inequalities).
So $n \geq B \Rightarrow 7 n^{3}+11 n^{2}+n \leq c n^{3}$.
Since n is an arbitrary element of $\mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 7 n^{3}+11 n^{2}+n \leq c n^{3}$.
Since c is a real positive number and B is a natural number, $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow$ $7 n^{3}+11 n^{2}+n \leq c n^{3}$.

By definition, $\left(7 n^{3}+11 n^{2}+n\right) \in O\left(n^{3}\right)$.

$$
{ }^{1} O(f)=\left\{g: \mathbb{N} \mapsto \mathbb{R} \geq 0 \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow g(n) \leq c f(n)\right\}
$$

