CSC165, Summer 2005, Assignment 2 Sample solution

Danny Heap

1. Let \mathbb{N} be the natural numbers $\{0,1,2, \ldots\}, \mathbb{Z}$ be the integers $\{\ldots,-2,-1,0,1,2, \ldots\}$, and \mathbb{R} be the real numbers. For $x \in \mathbb{R}$, define $r(x)$ as: $\exists m \in \mathbb{N}, \exists n \in \mathbb{N},(n>0) \wedge(x=m / n)$. You may assume $\neg r(\sqrt{2})$.
Using our structured proof form, prove or disprove the following:
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},(r(x) \wedge r(y)) \Rightarrow r(x+y)$.

Sample solution: The statement is true.
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$.
Assume $r(x) \wedge r(y)$.
Then $\exists m_{x}, n_{x} \in \mathbb{N}, n_{x}>0 \wedge x=m_{x} / n_{x}$. (by definition of $r(x)$).
Then $\exists m_{y}, n_{y} \in \mathbb{N}, n_{y}>0 \wedge y=m_{y} / n_{y}$. (by definition of $r(y)$).
Let $m_{x+y}=n_{y} m_{x}+n_{x} m_{y}$. Let $n_{x+y}=n_{x} n_{y}$.
Then $m_{x+y} \in \mathbb{N}$. (since natural numbers are closed under multiplication and addition).
Then $n_{x+y} \in \mathbb{N}$ and $n_{x+y} \neq 0$. (since natural numbers are closed under multiplication, and the product of non-zero natural numbers is not zero).
Also $x+y=m_{x+y} / n_{x+y}$. (definition of addition of fractions).
Hence $\exists m \in \mathbb{N}, \exists n \in \mathbb{N} n>0$ and $x+y=m / n$.
Thus $r(x+y)$. (by definition of $r(x+y)$).
So $(r(x) \wedge r(y)) \Rightarrow r(x+y)$.
Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R},(r(x) \wedge r(y)) \Rightarrow r(x+y)$.
(b) The converse of (a)

Sample solution: The statement is false.
Let $x=\sqrt{2}$. Let $y=2-\sqrt{2}$.
Then $x \in \mathbb{R}$. (real numbers include roots of positive reals).
Then $y \in \mathbb{R}$. (real numbers are closed under subtraction).
Let $m=2$. Let $n=1$.
Then $m \in \mathbb{N}$.
Then $n \in \mathbb{N}$ and $n \neq 0$.
Also $x+y=2 / 1$. (since $\sqrt{2}+2-\sqrt{2}=2$).
Hence $\exists m \in \mathbb{N}$ and $\exists n \in \mathbb{N}, n \neq 0$ and $x+y=m / n$.
So $r(x+y)$ and $\neg r(x)$. (by definition of $r(x+y)$, and given assumption that $\neg r(\sqrt{2})$.
Thus $r(x+y) \wedge \neg(r(x) \wedge r(y))$. (since $\neg r(x)$ implies $\neg r(x) \vee \neg r(y)$).
Thus $r(x+y) \nRightarrow(r(x) \wedge r(y))$. (by negation of implication).

Thus $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, r(x+y) \nRightarrow(r(x) \wedge r(y))$.
(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},(r(x) \wedge r(y)) \Rightarrow r(x y)$.

SAMPLE SOLUTION: The statement is true.
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$.

Assume $r(x) \wedge r(y)$

Then $\exists m_{x}, n_{x} \in \mathbb{N}, n_{x}>0 \wedge x=m_{x} / n_{x}$. (by definition of $r(x)$).
Then $\exists m_{y}, n_{y} \in \mathbb{N}, n_{y}>0 \wedge y=m_{y} / n_{y}$. (by definition of $r(y)$).
Let $m_{x y}=m_{x} m_{y}$. Let $n_{x y}=n_{x} n_{y}$
Then $m_{x y} \in \mathbb{N}$. (natural numbers are closed under multiplication).
Then $n_{x y} \in \mathbb{N}$ and $n_{x y} \neq 0$. (natural numbers are closed under multiplication and the product of non-zero natural numbers is non-zero).
Also, $x y=m_{x y} / n_{x y}$.
Hence $\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, n \neq 0$ and $x y=m / n$.
Thus $r(x y)$. (by definition of $r(x y)$).
So $(r(x) \wedge r(y)) \Rightarrow r(x y)$.
Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R},(r(x) \wedge r(y)) \Rightarrow r(x y)$.
(d) The converse of (c)

SAMPLE SOLUTION: The statement is false
Let $x=\sqrt{2}$. Let $y=\sqrt{2}$.
Then $x \in \mathbb{R}$. (real numbers include roots of positive reals).
Then $y \in \mathbb{R}$. (real numbers include roots of positive reals).
Let $m=2$. Let $n=1$.
Then $m \in \mathbb{N}$.
Then $n \in \mathbb{N}$ and $n \neq 0$.
Also $x y=m / n$. (since $\sqrt{2}^{2}=2$).
Hence $\exists m \in \mathbb{N}, n \in \mathbb{N}, n \neq 0$ and $x y=m / n$.
So $r(x y)$ and $\neg r(x)$. (definition of $r(x y)$ and given assumption that $\neg r(\sqrt{2})$).
So $r(x y)$ and $\neg(r(x) \wedge r(y))$. (at least one of $r(x), r(y)$ is false).
So $r(x y) \nRightarrow(r(x) \wedge r(y))$. (negation of implication)
Thus $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, r(x y) \nRightarrow(r(x) \wedge r(y))$.
2. For $x \in \mathbb{R}$, define $|x|$ by

$$
|x|= \begin{cases}-x, & x<0 \\ x, & x \geq 0\end{cases}
$$

Using our structured proof form, prove or disprove the following. You may assume that if $t>0$, then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow t x>t y$.
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x||y|=|x y|$.

Sample solution: The statement is true.
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$.
Case $1, x<0$ and $y<0$.
Then $|x|=-x$ and $|y|=-y$. (definition of $|x|$ and $|y|$).
So $|x||y|=(-x)(-y)=x y$. (since $(-1)^{2}=1$).
Also $x y>0$. (product of negative numbers is positive).
So $x y=|x y|$. (definition of $|x y|$ when $x y \geq 0$).
Hence $|x||y|=|x y|$.

Case 2, $x<0$ and $y \geq 0$.
Then $|x|=-x$ and $|y|=y$. (definition of $|x|$ and $|y|)$.
So $|x| y \mid=-x y$.
Also $x y \leq 0$. (product of a negative and a non-negative number is either 0 or negative).
So either $|x y|=-x y$ (by the definition of $|x y|$ when $x y<0$), or $|x y|=x y=$ $-x y$ (by the definition of $|x y|$ when $x y=0$).
Thus $|x| y|=|x y|$.
Case $3, x \geq 0$ and $y<0$.
Then $|x|=x$ and $|y|=-y$. (definition of $|x|$ and $|y|)$.
So $|x| y \mid=-x y$.
Also $x y \leq 0$. (product of a non-negative number with a negative number is non-positive).
So either $|x y|=-x y$ (by the definition of $|x y|$ for $x y<0$) or $|x y|=x y=$ $-x y$ (by the definition of $|x y|$ for $x y=0$).
So $|x||y|=|x y|$.
Case $4, x \geq 0$ and $y \geq 0$.
Then $|x|=x$ and $|y|=y$. (definition of $|x|$ and $|y|$).
Also $x y \geq 0$. (product of non-negative numbers is non-negative).
So $|x y|=x y$. (definition of $|x y|$).
Thus $|x| y|=|x y|$.
In each case $|x||y|=|x y|$, and these cover all possibilities. So $|x||y|=|x y|$.
Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x||y|=|x y|$.
(b) $\forall x_{1} \in \mathbb{R}, \forall x_{2} \in \mathbb{R}, \forall y_{1} \in \mathbb{R}, \forall y_{2} \in \mathbb{R},\left|x_{1}\right|>\left|x_{2}\right| \wedge\left|y_{1}\right|>\left|y_{2}\right| \Rightarrow\left|x_{1} y_{1}\right|>\left|x_{2} y_{2}\right|$.

Sample solution: The statement is true.
Let $x_{1} \in \mathbb{R}$. Let $x_{2} \in \mathbb{R}$. Let $y_{1} \in \mathbb{R}$. Let $y_{2} \in \mathbb{R}$.
Assume $\left|x_{1}\right|>\left|x_{2}\right| \wedge\left|y_{1}\right|>\left|y_{2}\right|$.
Let $t=\left|y_{1}\right|$.
Then $t \in \mathbb{R}$. (definition of $\left|y_{1}\right|$).
Then $t>\left|y_{2}\right|$. (Since $t=\left|y_{1}\right|>\left|y_{2}\right|$, by assumption).
Also $\left|y_{2}\right| \geq 0$. (Since either $\left|y_{2}\right|=-y 2>0$ if y_{2} is negative, or $\left|y_{2}\right|=y_{2} \geq 0$ if y_{2} is non-negative, by definition of $\left|y_{2}\right|$.
So $t>0$. (Since $t>|y-2| \geq 0$).
Then $t\left|x_{1}\right|>t\left|x_{2}\right|$. (Since $\left|x_{1}\right|>\left|x_{2}\right|$, by assumption, and the result we are allowed to assume for this question).
So $\left|x_{1}\right|\left|y_{1}\right|>\left|x_{2}\right|\left|y_{1}\right|$. (by construction of t and commutativity of multiplication) Let $t=\left|x_{2}\right|$.

Then $t \in \mathbb{R}$. (by definition of $\left|x_{2}\right|$.
Also $t \geq 0$. (since either $\left|x_{2}\right|=-x_{2}>0$ if x_{2} is negative, or $\left|x_{2}\right|=x_{2} \geq 0$ if x_{2} is non-negative, by definition of $\left|x_{2}\right|$.).
So $t\left|y_{1}\right| \geq t\left|y_{2}\right|$. (since either $t\left|y_{1}\right|>t\left|y_{2}\right|$, by the result we are allowed to assume for this question when $t>0$, or $t\left|y_{1}\right|=t\left|y_{2}\right|$ when $t=0$).
So $\left|x_{2}\right|\left|y_{1}\right| \geq\left|x_{2}\right|\left|y_{2}\right|$. (by definition of t)
So $\left|x_{1}\right|\left|y_{1}\right|>\left|x_{2}\right|\left|y_{2}\right|$. (Since $\left|x_{1}\right|\left|y_{1}\right|>\left|x_{2}\right|\left|y_{1}\right|$ and $\left|x_{2}\right|\left|y_{1}\right| \geq\left|x_{2}\right|\left|y_{2}\right|$.
So $\left|x_{1} y_{1}\right|>\left|x_{2} y_{2}\right|$. (Since $\left|x_{1}\right|\left|y_{1}\right|=\left|x_{1} y_{1}\right|$ and $\left|x_{2}\right|\left|y_{2}\right|=\left|x_{2} y_{2}\right|$, by part (a)).
So $\left|x_{1}\right|>\left|x_{2}\right| \wedge\left|y_{1}\right|>\left|y_{2}\right| \Rightarrow\left|x_{1} y_{1}\right|>\left|x_{2} y_{2}\right|$.

Since $x_{1}, x_{2}, y_{1}, y_{2}$ are arbitrary elements of $\mathbb{R}, \forall x_{1} \in \mathbb{R}, \forall y_{1} \in \mathbb{R}, \forall y_{2} \in \mathbb{R},\left(\left|x_{1}\right|>\right.$ $\left.\left|x_{2}\right| \wedge\left|y_{1}\right|>\left|y_{2}\right|\right) \Rightarrow\left|x_{1} y_{1}\right|>\left|x_{2} y_{2}\right|$.
3. Let \mathbb{R}^{+}be the set of positive real numbers. Use our structured proof form to prove or disprove:
(a)

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
$$

Sample solution: The statement is (strangely) true.
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$.
Case 1, $x=y$
Let $\delta=17$.
Then $\delta \in \mathbb{R}^{+}$
Let $\epsilon \in \mathbb{R}^{+}$.
Then $\left|x^{2}-y^{2}\right|=0<\epsilon$. (since $x=y$ and ϵ is positive).
So $|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$. (since the consequent is true, the entire implication is true).
Since ϵ is an arbitrary element of $\mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
So $\exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
Case 2, $x \neq y$.
Then $|x-y|>0$. (since $x-y \neq 0$ and either $|x-y|=x-y$, if $x>y$, or $|x-y|=y-x$, if $y>x$).
Let $\delta=|x-y| / 2$.
Then $\delta \in \mathbb{R}^{+}$. (since δ is half of a positive number).
Also, $|x-y|>\delta$. (since $|x-y|-\delta=\delta>0)$.
Let $\epsilon \in \mathbb{R}$.
Then $\neg(|x-y|<\delta)$. (since $|x-y|>\delta)$.
So $|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$. (since a false antecedent implies
anything).
Since ϵ is an arbitrary element of $\mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
So $\exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
In either case $\exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$, and these cases cover all possibilities.
So $\exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists \delta \in \mathbb{R}^{+}, \forall \epsilon \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow$ $\left|x^{2}-y^{2}\right|<\epsilon$.
(b)

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall \epsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
$$

Sample solution: The claim is true.
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Let $\in \in \mathbb{R}$.
Case $1, x^{2}-y^{2}=0$.
Let $\delta=1$.
Then $\delta \in \mathbb{R}^{+}$.
Assume $|x-y|<\delta$.
Then $\left|x^{2}-y^{2}\right|<\epsilon$. (since $\left.\epsilon \in \mathbb{R}^{+}\right)$

$$
\begin{gathered}
\text { So }|x-y|<\delta|\Rightarrow| x^{2}-y^{2} \mid<\epsilon \\
\text { So } \exists \delta \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
\end{gathered}
$$

Case 2, $x^{2}-y^{2} \neq 0$
Then $(x-y)(x+y) \neq 0$. (by factoring quadratic).
So $(x-y) \neq 0$ and $(x+y) \neq 0$. (non-zero product has no zero factors).
Let $\delta=\epsilon /(2|x+y|)$.
Then $\delta \in \mathbb{R}^{+}$. (since it ratio of positive numbers).
Assume $|x-y|<\delta$.
Then $\left|x^{2}-y^{2}\right|=|x-y||x+y|$. (by part 2a).
So $\left|x^{2}-y^{2}\right|<\delta|x+y|$. (by assumption that $|x-y|<\delta$).
So $\delta|x+y|=[\epsilon /(2|x+y|)] \times|x+y|$. (by construction of δ).
So $\left|x^{2}-y^{2}\right|<\epsilon / 2<\epsilon$. (Since $\epsilon-\epsilon / 2=\epsilon / 2>0$).

$$
\text { So }|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
$$

So $\exists \delta \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
In either case $\exists \delta \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$, and this covers all possibilities.
Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall \epsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+},|x-y|<\delta \Rightarrow$ $\left|x^{2}-y^{2}\right|<\epsilon$
(c)

$$
\forall \epsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in[-1,1], \forall y \in[-1,1],|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
$$

SAMPLE SOLUTION: The claim is true.
Let $\epsilon \in \mathbb{R}^{+}$.
Let $\delta=\epsilon / 2$.
Then $\delta \in \mathbb{R}^{+}$. (since $\epsilon \in \mathbb{R}^{+}$means $\epsilon / 2$ is a ratio of positive real numbers).
Let $x \in[-1,1]$. Let $y \in[-1,1]$.
Assume $|x-y|<\delta$.
Then $(x+y) \in[-2,2]$. (Taking the maximum and minimum sums).
So $|x+y| \leq 2$. (Taking the maximum absolute value).
So $|x-y||x+y| \leq|x-y| 2$.
So $\left|x^{2}-y^{2}\right| \leq|x-y| 2<2 \delta$. (By the assumption that $|x-y|<\delta$).
So $\left|x^{2}-y^{2}\right|<2 \epsilon / 2=\epsilon$. (By the construction of ϵ).
So $|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
Since x and y are arbitrary elements of $[-1,1], \forall x \in[-1,1], \forall y \in[-1,1],|x-y|<$ $\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
So $\exists \delta \in \mathbb{R}^{+}, \forall x \in[-1,1], \forall y \in[-1,1],|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon$.
Since ϵ is an arbitrary element of $\mathbb{R}, \forall \epsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in[-1,1], \forall y \in[-1,1],|x-y|<\delta \Rightarrow$ $\left|x^{2}-y^{2}\right|<\epsilon$.
(d)

$$
\forall \epsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R},|x-y|<\delta \Rightarrow\left|x^{2}-y^{2}\right|<\epsilon
$$

SAMPLE SOLUTION: The claim is false, so I will prove its negation:

$$
\exists \epsilon \in \mathbb{R}^{+}, \forall \delta \in \mathbb{R}^{+}, \exists x \in \mathbb{R}, \exists y \in \mathbb{R},|x-y|<\delta \wedge\left|x^{2}-y^{2}\right| \geq \epsilon
$$

Let $\epsilon=1$.
Let $\delta \in \mathbb{R}^{+}$.

$$
\begin{aligned}
& \text { Let } x=2 / \delta \text {. Let } y=x+\delta / 2 \text {. } \\
& \text { So }|x-y|=\delta / 2<\delta .(\text { since } \delta-\delta / 2=\delta / 2>0) \text {. } \\
& \text { So }\left|x^{2}-y^{2}\right|=|x-y||x+y|=\delta / 2(2 \times 2 / \delta+\delta / 2) \text { (by construction of } x \text { and } \\
& y \text {. } \\
& \text { So }\left|x^{2}-y^{2}\right|=2+\delta^{2} / 4>\epsilon \text {. (Since } \epsilon=1 \text {, and } \delta^{2} / 4 \text { is positive). } \\
& \text { So }|x-y|<\delta \text { and }\left|x^{2}-y^{2}\right|>\epsilon \text {. } \\
& \text { So } \exists x \in \mathbb{R}, \exists y \in \mathbb{R},|x-y|<\delta \wedge\left|x^{2}-y^{2}\right| \geq \epsilon \text {. }
\end{aligned}
$$

Since δ is an arbitrary element of $\mathbb{R}^{+}, \forall \delta \in \mathbb{R}^{+}, \exists x \in \mathbb{R}, \exists y \in \mathbb{R},|x-y|<\delta \wedge\left|x^{2}-y^{2}\right| \geq \epsilon$ So $\exists \epsilon \in \mathbb{R}^{+}, \forall \delta \in \mathbb{R}^{+}, \exists x \in \mathbb{R}, \exists y \in \mathbb{R},|x-y|<\delta \wedge\left|x^{2}-y^{2}\right| \geq \epsilon$
4. Suppose f and g are functions from \mathbb{R} onto \mathbb{R}. Consider the following statements:

$$
\begin{aligned}
& \text { S1 } \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R},(f(x)=f(y)) \Rightarrow(x=y) . \\
& \text { S2 } \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R},(g(x)=g(y)) \Rightarrow(x=y) . \\
& \text { S3 } \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R},(g(f(x))=g(f(y))) \Rightarrow(x=y) .
\end{aligned}
$$

Does (S1^S2) imply S3? Prove your claim.
Sample solution: The claim is true.
Assume S1 \wedge S2
So S1
So S2
Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$.
Assume $g(f(x))=g(f(y))$.
Let $x^{\prime}=f(x)$. Let $y^{\prime}=f(y)$.
Then $x^{\prime} \in \mathbb{R}$ and $y^{\prime} \in \mathbb{R}$. (by assumption that f and g are from \mathbb{R} to \mathbb{R}).
So $x^{\prime}=y^{\prime}$. (By assumption of S2, since $g\left(x^{\prime}\right)=g\left(y^{\prime}\right)$).
So $f(x)=f(y)$. (by construction of x^{\prime} and y^{\prime}).
So $x=y$. (By assumption of S1, since $f(x)=f(y)$).
So $g(f(x))=g(f(y)) \Rightarrow x=y$.
Since x and y are arbitrary elements of $\mathbb{R}, g(f(x))=g(f(y)) \Rightarrow x=y$.
Then S3. (by definition of S3).
Hence $\mathrm{S} 1 \wedge \mathrm{~S} 2 \Rightarrow \mathrm{~S}$.

