CSC165, Summer 2005, Assignment 2 Sample solution

Danny Heap

1. Let \mathbb{N} be the natural numbers $\{0, 1, 2, \ldots\}$, \mathbb{Z} be the integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$, and \mathbb{R} be the real numbers. For $x \in \mathbb{R}$, define r(x) as: $\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, (n > 0) \land (x = m/n)$. You may assume $\neg r(\sqrt{2})$.

Using our structured proof form, prove or disprove the following:

(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (r(x) \land r(y)) \Rightarrow r(x+y).$

SAMPLE SOLUTION: The statement is true.

Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Assume $r(x) \wedge r(y)$. Then $\exists m_x, n_x \in \mathbb{N}, n_x > 0 \wedge x = m_x/n_x$. (by definition of r(x)). Then $\exists m_y, n_y \in \mathbb{N}, n_y > 0 \wedge y = m_y/n_y$. (by definition of r(y)). Let $m_{x+y} = n_y m_x + n_x m_y$. Let $n_{x+y} = n_x n_y$. Then $m_{x+y} \in \mathbb{N}$. (since natural numbers are closed under multiplication and addition). Then $n_{x+y} \in \mathbb{N}$ and $n_{x+y} \neq 0$. (since natural numbers are closed under multiplication, and the product of non-zero natural numbers is not zero). Also $x + y = m_{x+y}/n_{x+y}$. (definition of addition of fractions). Hence $\exists m \in \mathbb{N}, \exists n \in \mathbb{N} n > 0$ and x + y = m/n. Thus r(x + y). (by definition of r(x + y)).

So $(r(x) \wedge r(y)) \Rightarrow r(x+y)$.

Since x and y are arbitrary elements of \mathbb{R} , $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $(r(x) \land r(y)) \Rightarrow r(x+y)$.

(b) The converse of (a)

SAMPLE SOLUTION: The statement is false.

Let $x = \sqrt{2}$. Let $y = 2 - \sqrt{2}$. Then $x \in \mathbb{R}$. (real numbers include roots of positive reals). Then $y \in \mathbb{R}$. (real numbers are closed under subtraction). Let m = 2. Let n = 1. Then $m \in \mathbb{N}$. Then $n \in \mathbb{N}$ and $n \neq 0$. Also x + y = 2/1. (since $\sqrt{2} + 2 - \sqrt{2} = 2$). Hence $\exists m \in \mathbb{N}$ and $\exists n \in \mathbb{N}$, $n \neq 0$ and x + y = m/n. So r(x + y) and $\neg r(x)$. (by definition of r(x + y), and given assumption that $\neg r(\sqrt{2})$. Thus $r(x + y) \land \neg (r(x) \land r(y))$. (since $\neg r(x)$ implies $\neg r(x) \lor \neg r(y)$). Thus $r(x + y) \not\Rightarrow (r(x) \land r(y))$. (by negation of implication). Thus $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, r(x+y) \not\Rightarrow (r(x) \wedge r(y)).$

(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (r(x) \land r(y)) \Rightarrow r(xy).$

SAMPLE SOLUTION: The statement is true.

Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Assume $r(x) \wedge r(y)$ Then $\exists m_x, n_x \in \mathbb{N}, n_x > 0 \wedge x = m_x/n_x$. (by definition of r(x)). Then $\exists m_y, n_y \in \mathbb{N}, n_y > 0 \wedge y = m_y/n_y$. (by definition of r(y)). Let $m_{xy} = m_x m_y$. Let $n_{xy} = n_x n_y$ Then $m_{xy} \in \mathbb{N}$. (natural numbers are closed under multiplication). Then $n_{xy} \in \mathbb{N}$ and $n_{xy} \neq 0$. (natural numbers are closed under multiplication). Then $n_{xy} \in \mathbb{N}$ and $n_{xy} \neq 0$. (natural numbers are closed under multiplication). Also, $xy = m_{xy}/n_{xy}$. Hence $\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, n \neq 0$ and xy = m/n. Thus r(xy). (by definition of r(xy)). So $(r(x) \wedge r(y)) \Rightarrow r(xy)$. Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (r(x) \wedge r(y)) \Rightarrow r(xy)$.

(d) The converse of (c)

SAMPLE SOLUTION: The statement is false

Let $x = \sqrt{2}$. Let $y = \sqrt{2}$. Then $x \in \mathbb{R}$. (real numbers include roots of positive reals). Then $y \in \mathbb{R}$. (real numbers include roots of positive reals). Let m = 2. Let n = 1. Then $m \in \mathbb{N}$. Then $n \in \mathbb{N}$ and $n \neq 0$. Also xy = m/n. (since $\sqrt{2}^2 = 2$). Hence $\exists m \in \mathbb{N}, n \in \mathbb{N}, n \neq 0$ and xy = m/n. So r(xy) and $\neg r(x)$. (definition of r(xy) and given assumption that $\neg r(\sqrt{2})$). So r(xy) and $\neg (r(x) \wedge r(y))$. (at least one of r(x), r(y) is false). So $r(xy) \neq (r(x) \wedge r(y))$. (negation of implication) Thus $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, r(xy) \neq (r(x) \wedge r(y))$.

2. For $x \in \mathbb{R}$, define |x| by

$$|x| = egin{cases} -x, & x < 0 \ x, & x \ge 0 \end{cases}$$

Using our structured proof form, prove or disprove the following. You may assume that if t > 0, then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow tx > ty$.

(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x||y| = |xy|$.

SAMPLE SOLUTION: The statement is true.

```
Let x \in \mathbb{R}. Let y \in \mathbb{R}.

Case 1, x < 0 and y < 0.

Then |x| = -x and |y| = -y. (definition of |x| and |y|).

So |x||y| = (-x)(-y) = xy. (since (-1)^2 = 1).

Also xy > 0. (product of negative numbers is positive).

So xy = |xy|. (definition of |xy| when xy \ge 0).

Hence |x||y| = |xy|.
```

Case 2, x < 0 and y > 0. Then |x| = -x and |y| = y. (definition of |x| and |y|). So |x||y| = -xy. Also $xy \leq 0$. (product of a negative and a non-negative number is either 0 or negative). So either |xy| = -xy (by the definition of |xy| when xy < 0), or |xy| = xy =-xy (by the definition of |xy| when xy = 0). Thus |x||y| = |xy|. Case 3, $x \ge 0$ and y < 0. Then |x| = x and |y| = -y. (definition of |x| and |y|). So |x||y| = -xy. Also xy < 0. (product of a non-negative number with a negative number is non-positive). So either |xy| = -xy (by the definition of |xy| for xy < 0) or |xy| = xy =-xy (by the definition of |xy| for xy = 0). So |x||y| = |xy|. Case 4, $x \ge 0$ and $y \ge 0$. Then |x| = x and |y| = y. (definition of |x| and |y|). Also $xy \ge 0$. (product of non-negative numbers is non-negative). So |xy| = xy. (definition of |xy|). Thus |x||y| = |xy|. In each case |x||y| = |xy|, and these cover all possibilities. So |x||y| = |xy|. Since x and y are arbitrary elements of \mathbb{R} , $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, |x||y| = |xy|. $(\mathrm{b}) \hspace{0.1in} \forall x_1 \in \mathbb{R}, \forall x_2 \in \mathbb{R}, \forall y_1 \in \mathbb{R}, \forall y_2 \in \mathbb{R}, |x_1| > |x_2| \wedge |y_1| > |y_2| \Rightarrow |x_1y_1| > |x_2y_2|.$ SAMPLE SOLUTION: The statement is true. Let $x_1 \in \mathbb{R}$. Let $x_2 \in \mathbb{R}$. Let $y_1 \in \mathbb{R}$. Let $y_2 \in \mathbb{R}$. Assume $|x_1| > |x_2| \wedge |y_1| > |y_2|$. Let $t = |y_1|$. Then $t \in \mathbb{R}$. (definition of $|y_1|$). Then $t > |y_2|$. (Since $t = |y_1| > |y_2|$, by assumption). Also $|y_2| \ge 0$. (Since either $|y_2| = -y^2 > 0$ if y_2 is negative, or $|y_2| = y_2 \ge 0$ if y_2 is non-negative, by definition of $|y_2|$. So t > 0. (Since $t > |y - 2| \ge 0$). Then $t|x_1| > t|x_2|$. (Since $|x_1| > |x_2|$, by assumption, and the result we are allowed to assume for this question). So $|x_1||y_1| > |x_2||y_1|$. (by construction of t and commutativity of multiplication) Let $t = |x_2|$. Then $t \in \mathbb{R}$. (by definition of $|x_2|$. Also $t \ge 0$. (since either $|x_2| = -x_2 > 0$ if x_2 is negative, or $|x_2| = x_2 \ge 0$ if x_2 is non-negative, by definition of $|x_2|$.). So $t|y_1| \ge t|y_2|$. (since either $t|y_1| > t|y_2|$, by the result we are allowed to assume for this question when t > 0, or $t|y_1| = t|y_2|$ when t = 0). So $|x_2||y_1| \ge |x_2||y_2|$. (by definition of t) So $|x_1||y_1| > |x_2||y_2|$. (Since $|x_1||y_1| > |x_2||y_1|$ and $|x_2||y_1| \ge |x_2||y_2|$. So $|x_1y_1| > |x_2y_2|$. (Since $|x_1||y_1| = |x_1y_1|$ and $|x_2||y_2| = |x_2y_2|$, by part (a)). So $|x_1| > |x_2| \land |y_1| > |y_2| \Rightarrow |x_1y_1| > |x_2y_2|$.

Since x_1, x_2, y_1, y_2 are arbitrary elements of \mathbb{R} , $\forall x_1 \in \mathbb{R}$, $\forall y_1 \in \mathbb{R}$, $\forall y_2 \in \mathbb{R}$, $(|x_1| > |x_2| \land |y_1| > |y_2|) \Rightarrow |x_1y_1| > |x_2y_2|$.

3. Let \mathbb{R}^+ be the set of positive real numbers. Use our structured proof form to prove or disprove:

(a)

$$orall x \in \mathbb{R}, orall y \in \mathbb{R}, \exists \delta \in \mathbb{R}^+, orall \epsilon \in \mathbb{R}^+, |x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon$$

SAMPLE SOLUTION: The statement is (strangely) true. Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Case 1, x = yLet $\delta = 17$. Then $\delta \in \mathbb{R}^+$ Let $\epsilon \in \mathbb{R}^+$. Then $|x^2 - y^2| = 0 < \epsilon$. (since x = y and ϵ is positive). So $|x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon$. (since the consequent is true, the entire implication is true). Since ϵ is an arbitrary element of \mathbb{R}^+ , $\forall \epsilon \in \mathbb{R}^+$, $|x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon$. So $\exists \delta \in \mathbb{R}^+, \, orall \epsilon \in \mathbb{R}^+, \, |x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon.$ Case 2, $x \neq y$. Then |x - y| > 0. (since $x - y \neq 0$ and either |x - y| = x - y, if x > y, or |x - y| = y - x, if y > x). Let $\delta = |x - y|/2$. Then $\delta \in \mathbb{R}^+$. (since δ is half of a positive number). Also, $|x - y| > \delta$. (since $|x - y| - \delta = \delta > 0$). Let $\epsilon \in \mathbb{R}$. Then $\neg(|x-y| < \delta)$. (since $|x-y| > \delta$). So $|x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon$. (since a false antecedent implies anything). Since ϵ is an arbitrary element of \mathbb{R}^+ , $\forall \epsilon \in \mathbb{R}^+$, $|x-y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. So $\exists \delta \in \mathbb{R}^+$, $\forall \epsilon \in \mathbb{R}^+$, $|x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. In either case $\exists \delta \in \mathbb{R}^+$, $\forall \epsilon \in \mathbb{R}^+$, $|x-y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$, and these cases cover all possibilities. So $\exists \delta \in \mathbb{R}^+$, $\forall \epsilon \in \mathbb{R}^+$, $|x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon$. Since x and y are arbitrary elements of $\mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists \delta \in \mathbb{R}^+, \forall \epsilon \in \mathbb{R}^+, |x - y| < \delta \Rightarrow$ $|x^2 - y^2| < \epsilon.$ (b) $orall x \in \mathbb{R}, orall y \in \mathbb{R}, orall \epsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, |x-u| < \delta \Rightarrow |x^2-u^2| < \epsilon.$ SAMPLE SOLUTION: The claim is true. Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Let $\epsilon \in \mathbb{R}$. Case 1. $x^2 - y^2 = 0$. Let $\delta = 1$. Then $\delta \in \mathbb{R}^+$. Assume $|x - y| < \delta$.

Then $|x^2 - y^2| < \epsilon$. (since $\epsilon \in \mathbb{R}^+$)

So $|x - y| < \delta| \Rightarrow |x^2 - y^2| < \epsilon$. So $\exists \delta \in \mathbb{R}^+, |x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$ Case 2, $x^2 - y^2 \neq 0$ Then $(x - y)(x + y) \neq 0$. (by factoring quadratic). So $(x - y) \neq 0$ and $(x + y) \neq 0$. (non-zero product has no zero factors). Let $\delta = \epsilon/(2|x + y|)$. Then $\delta \in \mathbb{R}^+$. (since it ratio of positive numbers). Assume $|x - y| < \delta$. Then $|x^2 - y^2| = |x - y||x + y|$. (by part 2a). So $|x^2 - y^2| < \delta |x + y|$. (by assumption that $|x - y| < \delta$). So $\delta |x + y| = [\epsilon/(2|x + y|)] \times |x + y|$. (by construction of δ). So $|x^2 - y^2| < \epsilon/2 < \epsilon$. (Since $\epsilon - \epsilon/2 = \epsilon/2 > 0$). So $|x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. In either case $\exists \delta \in \mathbb{R}^+, |x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. and this covers all possibilities.

Since x and y are arbitrary elements of \mathbb{R} , $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall \epsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, |x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$

$$\forall \epsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \forall x \in [-1,1], \forall y \in [-1,1], |x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon.$$

SAMPLE SOLUTION: The claim is true. Let $\epsilon \in \mathbb{R}^+$.

Let $\delta = \epsilon/2$. Then $\delta \in \mathbb{R}^+$. (since $\epsilon \in \mathbb{R}^+$ means $\epsilon/2$ is a ratio of positive real numbers). Let $x \in [-1, 1]$. Let $y \in [-1, 1]$. Assume $|x - y| < \delta$. Then $(x + y) \in [-2, 2]$. (Taking the maximum and minimum sums). So $|x + y| \leq 2$. (Taking the maximum absolute value). So $|x - y||x + y| \leq |x - y|2$. So $|x^2 - y^2| \leq |x - y|2 < 2\delta$. (By the assumption that $|x - y| < \delta$). So $|x^2 - y^2| \leq 2\epsilon/2 = \epsilon$. (By the construction of ϵ). So $|x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. Since x and y are arbitrary elements of [-1, 1], $\forall x \in [-1, 1]$, $\forall y \in [-1, 1]$, $|x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$. Since ϵ is an arbitrary element of \mathbb{R} , $\forall \epsilon \in \mathbb{R}^+$, $\exists \delta \in \mathbb{R}^+$, $\forall x \in [-1, 1]$, $\forall y \in [-1, 1]$, $|x - y| < \delta \Rightarrow |x^2 - y^2| < \epsilon$.

$$|x^2 - y|$$

(d)

$$orall \epsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, orall x \in \mathbb{R}, orall y \in \mathbb{R}, |x-y| < \delta \Rightarrow |x^2-y^2| < \epsilon.$$

SAMPLE SOLUTION: The claim is false, so I will prove its negation:

$$\exists \epsilon \in \mathbb{R}^+, orall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, |x-y| < \delta \wedge |x^2-y^2| \geq \epsilon$$

Let $\epsilon = 1$.

Let $\delta \in \mathbb{R}^+$.

Let $x = 2/\delta$. Let $y = x + \delta/2$. So $|x - y| = \delta/2 < \delta$. (since $\delta - \delta/2 = \delta/2 > 0$). So $|x^2 - y^2| = |x - y||x + y| = \delta/2(2 \times 2/\delta + \delta/2)$ (by construction of x and y). So $|x^2 - y^2| = 2 + \delta^2/4 > \epsilon$. (Since $\epsilon = 1$, and $\delta^2/4$ is positive). So $|x - y| < \delta$ and $|x^2 - y^2| > \epsilon$. So $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, |x - y| < \delta \land |x^2 - y^2| \ge \epsilon$. Since δ is an arbitrary element of \mathbb{R}^+ , $\forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, |x - y| < \delta \land |x^2 - y^2| \ge \epsilon$ So $\exists \epsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, |x - y| < \delta \land |x^2 - y^2| \ge \epsilon$

4. Suppose f and g are functions from \mathbb{R} onto \mathbb{R} . Consider the following statements:

S1 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (f(x) = f(y)) \Rightarrow (x = y).$ S2 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (g(x) = g(y)) \Rightarrow (x = y).$ S3 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (g(f(x)) = g(f(y))) \Rightarrow (x = y).$

Does $(S1 \land S2)$ imply S3? Prove your claim.

SAMPLE SOLUTION: The claim is true.

Assume $S1 \land S2$

So S1 So S2 Let $x \in \mathbb{R}$. Let $y \in \mathbb{R}$. Assume g(f(x)) = g(f(y)). Let x' = f(x). Let y' = f(y). Then $x' \in \mathbb{R}$ and $y' \in \mathbb{R}$. (by assumption that f and g are from \mathbb{R} to \mathbb{R}). So x' = y'. (By assumption of S2, since g(x') = g(y')). So f(x) = f(y). (by construction of x' and y'). So x = y. (By assumption of S1, since f(x) = f(y)). So $g(f(x)) = g(f(y)) \Rightarrow x = y$. Since x and y are arbitrary elements of \mathbb{R} , $g(f(x)) = g(f(y)) \Rightarrow x = y$.

Then S3. (by definition of S3).

Hence S1 \land S2 \Rightarrow S3.