CSC165, Summer 2005, Assignment 2
Sample solution

Danny Heap

1. Let N be the natural numbers {0,1,2,...}, Z be the integers {...,—2,-1,0,1,2,...}, and R be the
real numbers. For z € R, define r(z) as: Im € N,;3In € N, (n > 0) A (z = m/n). You may assume

-r(1/2).

Using our structured proof form, prove or disprove the following:

(a) Vz € R,Vy € R, (r(z) Ar(y)) = r(z + v).
SAMPLE SOLUTION: The statement is true.

Let z € R. Let y € R.
Assume 7(z) A r(y).
Then Img;,ng, € N, ngy >0 A £ = my/n,. (by definition of r(z)).
Then Imy,ny € N, ny >0 A y = my/ny. (by definition of (y)).
Let mgyyy = nyme +nymy. Let ngy = nengy.
Then my14 € N. (since natural numbers are closed under multiplication
and addition).
Then nz4y € N and ng1y # 0. (since natural numbers are closed under
multiplication, and the product of non-zero natural numbers is not zero).
Also 2 +y = Mgy /Nety. (definition of addition of fractions).
Hence Im € N,In € Nn >0 and z + y = m/n.
Thus 7(z + y). (by definition of r(z + v)).
So (r(z) Ar(y)) = r(z + y).
Since z and y are arbitrary elements of R, Vz € R, Vy € R, (r(z) Ar(y)) = r(z + y).
(b) The converse of (a)
SAMPLE SOLUTION: The statement is false.

Let z = /2. Lety:2—\/§.

Then z € R. (real numbers include roots of positive reals).
Then y € R. (real numbers are closed under subtraction).
Let m =2. Let n = 1.

Then m € N.

Then n € N and n # 0.

Also z +y = 2/1. (since V242 — /2 = 2).
Hence Im e Nand In e Nyn#0and z +y = m/n.
So r(z + y) and —r(z). (by definition of r(z + y), and given assumption that
—r(+2).
Thus 7(z + y) A ~(r(z) Ar(y)). (since —r(z) implies —r(z) V —r(y)).
Thus r(z + y) & (r(z) Ar(y)). (by negation of implication).



Thus 3z € R, Jy € R, r(z + y) & (r(z) Ar(y)).
(c) Vz € R,Vy € R, (r(z) Ar(y)) = r(zy).
SAMPLE SOLUTION: The statement is true.
Let z € R. Let y € R.
Assume r(z) A r(y)
Then Imgz,ngy € N, ngy > 0 A £ = mg/n,. (by definition of r(z)).
Then Imy,ny € N, ny >0 A y = my/ny. (by definition of 7(y)).
Let mgy = mgymy. Let ngy = ngny
Then mgy € N. (natural numbers are closed under multiplication).
Then ngy € N and ngy # 0. (natural numbers are closed under multi-
plication and the product of non-zero natural numbers is non-zero).
Also, zy = Mgy /Ngy.
Hence 3m € N, In € N, n # 0 and zy = m/n.
Thus r(zy). (by definition of r(zy)).
So (r(z) Ar(y)) = r(zy).
Since z and y are arbitrary elements of R, Vz € R, Vy € R, (r(z) A r(y)) = r(zy).
(d) The converse of (c)
SAMPLE SOLUTION: The statement is false

Let z = /2. Lety:\/i.
Then z € R. (real numbers include roots of positive reals).
Then y € R. (real numbers include roots of positive reals).
Let m =2. Let n = 1.
Then m € N.
Then n € Nand n # 0.
Also zy = m/n. (since ﬂz =2).
Hence 3m € N, n € N, n # 0 and zy = m/n.
So r(zy) and —r(z). (definition of r(zy) and given assumption that —r(1/2)).
So r(zy) and ~(r(z) Ar(y)). (at least one of r(z),r(y) is false).
So r(zy) # (r(z) Ar(y)). (negation of implication)
Thus 3z € R, 3y € R, r(zy) % (r(z) Ar(y)).

-z, <0
|z| =
z, z2>0
Using our structured proof form, prove or disprove the following. You may assume that if ¢ > 0, then
Ve e R,Vy e R,z >y =tz > ty.

2. For z € R, define |z| by

(a) Vz € R,Vy € R, |z|ly| = |zy].
SAMPLE SOLUTION: The statement is true.
Let z € R. Let y € R.
Case 1,z < 0and y < 0.

Then |z| = —z and |y| = —y. (definition of |z| and |y|).
So [elly] = (~2)(—y) = oy. (since (~1)° = 1).

Also zy > 0. (product of negative numbers is positive).
So zy = |zy|. (definition of |zy| when zy > 0).

Hence |z||y| = |zy|.



Case 2, z < 0and y > 0.
Then |z| = —z and |y| = y. (definition of |z| and |y|).
So |z||ly| = —=zv.
Also zy < 0. (product of a negative and a non-negative number is either 0
or negative).
So either |zy| = —zy (by the definition of |zy| when zy < 0), or |zy| = zy =
—zy (by the definition of |zy| when zy = 0).
Thus |z||y| = |zy|.
Case 3,z >0and y < 0.
Then |z| = z and |y| = —y. (definition of |z| and |y|).
So Jelly| = —ay.
Also zy < 0. (product of a non-negative number with a negative number is
non-positive).
So either |zy| = —zy (by the definition of |zy| for zy < 0) or |zy| = zy =
—zy (by the definition of |zy| for zy = 0).
So |z[ly| = |zyl.
Case 4,z >0and y > 0.
Then |z| = z and |y| = y. (definition of |z| and |y]|).
Also zy > 0. (product of non-negative numbers is non-negative).
So |zy| = zy. (definition of |zy]).
Thus |z||y| = |zy|-
In each case |z||y| = |zy|, and these cover all possibilities. So |z||y| = |zy|.

Since z and y are arbitrary elements of R, Vz € R, Vy € R, |z||ly| = |zy|.

(b) Vz; € R,Vzy € R,Vy; € R,Vyz € R, [z1] > 22| A |y1] > [y2] = [z191] > |T292].
SAMPLE SOLUTION: The statement is true.

Let z; € R. Let z; € R. Let y; € R. Let y; € R.
Assume |z1] > |z2| Aly1]| > |yl
Let t = |y1]-
Then ¢ € R. (definition of |y;|).
Then t > |y2|. (Since t = |y1| > |y2|, by assumption).
Also |y2| > 0. (Since either |y»| = —y2 > 0 if y, is negative, or |y2| =y2 >0
if y, is non-negative, by definition of |ys|.
Sot > 0. (Since t > |y — 2| > 0).
Then t|z1| > t|z2|. (Since |z1]| > |22, by assumption, and the result we are
allowed to assume for this question).

So |z1||y1] > |z2]|y1]- (by construction of ¢ and commutativity of multiplication)

Let t = |zo].
Then ¢t € R. (by definition of |z5].
Also t > 0. (since either |z3| = —z, > 0 if 2, is negative, or |z3| = 25 > 0 if

zo is non-negative, by definition of |z2].).
So t|y1| > t|lyz|. (since either t|yi| > t|yz|, by the result we are allowed to
assume for this question when ¢ > 0, or ¢|y1| = t|y2| when t = 0).
So |z2||y1] > |z2||y2|. (by definition of ¢)
So |1[|y1] > |22[|y2|- (Since [21]|y1] > |22[[y1] and |2 ||ys| > [22||y2]-
So |z1y1] > |z2y2|. (Since |z1||y1| = |z1y1] and |z2||y2| = |z2y2|, by part (a)).
So |z1| > |z2| A ly1] > |y2| = |z1y1] > |2292]-



Since 1, T2, Y1, Y2 are arbitrary elements of R, Vz; € R, Vy; € R, Vyz € R, (|z1]| >
|Z2| Alyi] > [y2]) = |z1y1] > [z292].

3. Let Rt be the set of positive real numbers. Use our structured proof form to prove or disprove:

(a)
Vz € R,Vy € R,36 € RT, Ve € RT, |z —y| < 6 = |2 — ¥%| < e.
SAMPLE SOLUTION: The statement is (strangely) true.
Let z € R. Let y e R.
Casel,z =y
Let § = 17.
Then § € RT
Let e € RT.
Then |22 — y?| = 0 < e. (since z = y and € is positive).
So |z —y| < 8 = |z? — y?| < €. (since the consequent is true, the entire
implication is true).
Since € is an arbitrary element of R*, Ve € RT, |z —y| < § = |22 — 32| <.
SoBERT,Vee RT, [z —y| <8 = |22 —y?| <.
Case 2,z #£vy.
Then |z —y| > 0. (since z —y # 0 and either [z —y| =2z —y, f z > y, or
lz—y|l=y—=z,ify>z).
Let § = |z — y|/2.
Then § € R, (since § is half of a positive number).
Also, |z —y| > 6. (since |z —y| —§ =& > 0).
Let € € R.
Then —(|z — y| < §). (since |z — y| > §).
So |z —y| < 8§ = |22 — y?| < €. (since a false antecedent implies
anything).
Since ¢ is an arbitrary element of R*, Ve € RT, [z —y| < 6 = |22 —y?| <.
SoBERT,Vee R, [z —y| < = |22 —y?| <.
In either case 3§ € RT, Ve € RY, |z —y| < § = |22 — y?| < ¢, and these cases cover all
possibilities.
SoIeRT,Vee R, [z —y| <8 = |22 —y?| <e.
Since z and y are arbitrary elements of R, Vz € R, Vy € R, 36 € RT, Ve e RT, |z —y| < 6 =
|22 — y?| < e.
(b)
Vz € R,Vy ER,Ve c RT, I € R, |z —y| <6 = |2 —%| <e.
SAMPLE SOLUTION: The claim is true.
Let z € R. Let y ¢ R. Let e € R.
Case 1, 22 —y? = 0.
Let 6§ = 1.
Then § € RT.
Assume |z — y| < 6.
Then |z? — y?| < €. (since € € RT)



Solz—y| <6 = |22 —y?| <e
SodeRT,jz—y|<d=|z2 —y? <e
Case 2,22 —y? #£0
Then (z — y)(z + y) # 0. (by factoring quadratic).

So (z —y) # 0 and (z + y) # 0. (non-zero product has no zero factors).
Let 6 = ¢/(2|z + y|).

Then § € R, (since it ratio of positive numbers).

Assume |z —y| < 6.
Then |z? — y?| = |z — y||z + y|. (by part 2a).
So |22 — y?| < 6|z + y|. (by assumption that |z — y| < §).
So d|lz +y| = [¢/(2]z + y|)] X |z + y|. (by construction of §).
So |22 — y?| < €/2 < . (Since € —€/2 = €/2 > 0).

Solz—y|<é= |22 —y?| <e.

SoBEeERT, |z —y|<d=|z? —y?| <e.

In either case 36 € RT, |z — y| < § = |z? — y?| < ¢, and this covers all possibilities.
Since z and y are arbitrary elements of R, Vz € R,Vy € R,Ve € RT,3§ € RT, |z —y| < ¢ =
22 — %] < e

(©)
Ve e RT,36 € RY,Vz € [-1,1],Vy € [-1,1],|z —y| < § = |2 — ¥®| <e.
SAMPLE SOLUTION: The claim is true.
Let e € RT.

Let 6§ = ¢/2.

Then § € RT. (since € € R* means €/2 is a ratio of positive real numbers).
Let z € [-1,1]. Let y € [-1,1].
Assume |z — y| < 4.

Then (z + y) € [-2,2]. (Taking the maximum and minimum sums).
So |z + y| < 2. (Taking the maximum absolute value).
So |z —yllz +y| < |z —y[2.
So |z% — y?| < |z — y|2 < 26. (By the assumption that |z — y| < §).
So |z% — y?| < 2¢/2 = €. (By the construction of €).
Solz—y|<éd=|z2 —y? <e
Since z and y are arbitrary elements of [—-1,1], Vz € [-1,1],Vy € [-1,1], |z —y| <
§= |2 —y? <e
So3I e R,V e [-1,1],Vy € [-1,1],|z —y| <= |22 —y?| < e
Since € is an arbitrary element of R, Ve € RT,36 € RT,Vz € [-1,1],Vy € [-1,1],|lz —y| < d =
|22 — y?| < e
(d)
Ve c RT,I6 e RT,VZER, VY €ER, |z —y| <6 = |z° — ¥%| < e
SAMPLE SOLUTION: The claim is false, so I will prove its negation:

Jec R,V e R, Iz e R, Y € R, |z —y| < S A |22 — y?| > e

Let e = 1.
Let § € RT.



Let 2 =2/4. Let y =2+ 6/2.
So|z—y|=46/2<0. (since § —6/2=146/2>0).
So |22 —y?| = |z —y||lz +y| = §/2(2 x 2/8 + 6/2) (by construction of z and
g?) |22 — y?| = 2+ 6%/4 > €. (Since € = 1, and §%/4 is positive).
So |z —y| <6 and |2% — y?| > €.
Sodz e R,y eR, |z —y| <A 2% —y?| > e
Since ¢ is an arbitrary element of R*, V6 € RT,3z € R,Fy € R, |z —y| < §A|z? —y?| > ¢

SodeeRT, V6 e R, Iz e R, Iy eR, |z —y| <IA|z? —y?| > ¢
4. Suppose f and g are functions from R onto R. Comnsider the following statements:

S1 VzeR,VyeR,(f(z) = f(y) = (z= )
52 VzeR,VyeR,(g9(z)=9(y)) = (=
S3 VzeR,VyeR,(g(f(z)) = ﬂfw):% =y).

~—

Does (S1AS2) imply S3? Prove your claim.
SAMPLE SOLUTION: The claim is true.
Assume S1 A S2

So S1

So 32

Let z € R. Let y € R.
Assume g(f(z)) = g(f(y)).

Let z' = f(z). Let y' = f(y).
Then z' € R and ¢’ € R. (by assumption that f and g are from R to R).
So z' = y'. (By assumption of S2, since g(z') = g(¥')).
So f(z) = f(y). (by construction of z’ and y').
So z = y. (By assumption of S1, since f(z) = f(y)).
So g(f(z)) = 9(f(¥)) = z=v.
Since z and y are arbitrary elements of R, g(f(z)) = 9(f(y)) = z =v.

Then S3. (by definition of S3).

Hence S1 A S2 = S3.



