
P
LE

A
SE

H
A
N
D

IN
P
LE

A
SE

H
A
N
D

IN

; Question 1 [8 Marks]

; Assume the following predicate ‘P’ has been defined.
;
; P : boolean boolean boolean → boolean

(define (P a b c)

 (and b (or c (not a))))

; Part (A) [2 Marks]

; In the definition of ‘P’ above: for each parameter/place-holder in the header
; draw an arrow from the parameter/place-holder to where it appears in the body.

; Part (B) [6 Marks]

; Evaluate the following expressions, showing the Intermediate Step Expressions
; and Final Result Value:

(P #true #true #true)

(P #true #false #false)

(P #false #true #false)

; Question 2 [10 Marks]

(require picturing-programs)

; Evaluate the following expressions, showing the Intermediate Step Expressions
; and Final Result Value:

(apply above (list))

(map string? (list "rope" (+ 3 4) "rock"))

(map rotate-ccw (list (beside (triangle 10 "outline" "black") (triangle 10 "solid" "black"))
 (triangle 10 "outline" "black")))

(apply + (map string-length (list (string-append "rick" "and") "morty")))

; Question 3 [10 Marks]

; Complete the two functions ‘tallness’ and ‘has-empty?’ by:
; ★ Writing another ‘check-expect’ expression.
; ★ Filling in the contract.
; ★ Writing the body of the function.

; Part (A) [5 Marks]

(check-expect (tallness (rectangle 20 25 "solid" "green"))
 ; The height is 5 more than the width.
 5)

; ★ Write another ‘check-expect’ for ‘tallness’ here:

; ★ tallness : →
;
; How much more is the height of ‘an-image’ than its width.
(define (tallness an-image)

)

; Part (B) [5 Marks]

(check-expect (has-empty? (list "one" "" "two"))
 #true)

(check-expect (has-empty? (list "one" "two"))
 (= 0 (apply * (map string-length (list "one" "two")))))

; ★ Write another ‘check-expect’ for ‘has-empty?’ here:

; ★ has-empty? : →
;
; Does the list of strings ‘a-list’ contain an empty string?
(define (has-empty? a-list)

)

; Question 4 [8 Marks]

(require picturing-programs)

(define heart)

; ★ Design and implement a function ‘trio’ by following the steps below.
; Do NOT draw any images by hand: use the variable ‘heart’ instead.

; ★ Write an expression, using the variable ‘heart’, that produces:

; ★ Write an expression, using the variable ‘heart’, that produces:

; Here is a Documentation/Test ‘check-expect’ for ‘trio’:

(check-expect (trio))

; ★ Fill in this ‘check-expect’, using the variable ‘heart’:

(check-expect (trio)

)

; ★ Fill in the contract, header, and body, to document and define ‘trio’:

; trio : →

(define

)

