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Abstract

In this document, we provide details on fitting the models described in [1]. We
show how to compute the partial derivatives of the Negative Log-Likelihood
(NLL) of the data under a single-cluster model in order to use them for conju-
gate gradient optimization. We then show how to optimize the NLL under the
multiple-cluster model using a generalized EM algorithm.

1 The Single-Cluster Model

Recall that in our single-cluster model, the probability of transitioning from 7 to j in time interval 7
is given by:
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The Negative Log-Likelihood (NLL) of the data under the single-cluster model is then:
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Here, N;;. is the number of transitions from ¢ to j in time interval 7 (recall that the map as well as
the time and the distances are discretized) and d;; is the (discretized) distance between 7 and j. We
abuse notation slightly by indicating different marginal histograms of IV by different subscripts: N4
is the number of transitions over distance d in time interval 7, and N; is the number of transitions
that end at destination j.



Taking derivatives with respect to the model parameters yields:
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Note that the derivatives with respect to the model parameters p and o (Egs. 6 and 8) can be naturally
interepreted as the difference between the expected counts of transitions and the observed counts of
transitions:
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2 The Multiple-Cluster Model

Under the Cluster model, the probability of the trajectory L3, L$, ..., L3, (s) of individual s is
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where P(®) corresponds to P in Eq. 1, as parametrized by cluster ¢. The NLL for a single individual
s is then
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where . is the prior probability of cluster c. The NLL for the entire dataset is:
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We optimize the NLL using a generalized EM algorithm [2], using exact E-steps and gradient de-
scent M-steps. Each individual s has a soft-assignment variable vy, .. corresponding to the probability
that the individual lies in cluster c. It is updated during the E-step:
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The generalized M-step consists of three updates. First, the cluster probabilities are updated:
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where S is the total number of individuals. Second, the parameters p of the individual clusters are
set by minimizing the expected NLL of the individual clusters with respect to p:
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where = indicates the omission of additive constants. Note that the individual clusters are separate
in this summation, so that the optimization can be broken into C' separate optimizations, one for
each cluster, where the contribution of user s to cluster c is weighted by «y; .. Performing the
conjugate gradient optimization in parallel on multiple cores takes no more time than optimizing the
non-clustered model.

Third, to optimize the shared parameters, we observe that the derivative of Q(61.c, o, u,v) is a
linear combination of derivatives that we can compute since they are analogous to the derivatives of
the NLL of the single-cluster model. For example,
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