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Abstract

In this document, we provide details on fitting the models described in [1]. We
show how to compute the partial derivatives of the Negative Log-Likelihood
(NLL) of the data under a single-cluster model in order to use them for conju-
gate gradient optimization. We then show how to optimize the NLL under the
multiple-cluster model using a generalized EM algorithm.

1 The Single-Cluster Model

Recall that in our single-cluster model, the probability of transitioning from i to j in time interval τ
is given by:

Pijτ =
exp (ρ(dij , τ) + αj + uTi vj)∑
` exp (ρ(di`, τ) + α` + uTi v`)

(1)

The Negative Log-Likelihood (NLL) of the data under the single-cluster model is then:

NLL = − log
∏
ijτ

(Pijτ )
Nijτ = −

∑
ijτ

Nijτ logPijτ (2)

= −
∑
ijτ

Nijτ

[
ρ(dij , τ) + αj + uTi vj − ln

∑
`

exp(ρ(di`, τ + α` + uTi v`))

]
(3)

= −
∑
τd

Nτdρ(d, τ)−
∑
j

Njαj −
∑
ijτ

Nijτu
T
i vj +

∑
ijτ

Nijτ ln
∑
`

exp(ρ(di`, τ) + α` + uTi v`)

(4)

Here, Nijτ is the number of transitions from i to j in time interval τ (recall that the map as well as
the time and the distances are discretized) and dij is the (discretized) distance between i and j. We
abuse notation slightly by indicating different marginal histograms ofN by different subscripts: Nτd
is the number of transitions over distance d in time interval τ , and Nj is the number of transitions
that end at destination j.
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Taking derivatives with respect to the model parameters yields:

∂NLL

∂αj
= −Nj +

∑
iτ

Niτ
exp(ρ(dij , τ) + αj)∑
` exp(ρ(di`, τ) + α`)

(5)

= −Nj +
∑
iτ

NiτPijτ (6)

∂NLL

∂ρτd
= −Nτd +

∑
ij

Nijτ

∑
`:di`=d

exp(ρ(di`, τ) + α`)∑
` exp(ρ(di`, τ) + α`)

(7)

= −Nτd +
∑
i

NiτPiτd (8)

∂NLL

∂ui
= −

∑
jτ

Nijτvj +
∑
jτ

Nijτ
∑
`

v`Pi`τ (9)

Note that the derivatives with respect to the model parameters ρ and α (Eqs. 6 and 8) can be naturally
interepreted as the difference between the expected counts of transitions and the observed counts of
transitions:

−Nj +
∑
iτ

NiτPijτ = −Nj + E[Nj ] (10)

−Nτd +
∑
i

NiτPiτd = −Nτd + E[Nτd] (11)

2 The Multiple-Cluster Model

Under the Cluster model, the probability of the trajectory Ls1, L
s
2, ..., L

s
K(s) of individual s is

P (c)
s = P (Ls1)

K(s)∏
k=2

P (Lsk|Lsk−1, τk−1, c) (12)

= P (Ls1)

K(s)∏
k=2

P
(c)
Lsk−1L

s
kτk−1

(13)

where P (c) corresponds to P in Eq. 1, as parametrized by cluster c. The NLL for a single individual
s is then

NLL(s) =
∑
c

πcP
(c)
s (14)

where πc is the prior probability of cluster c. The NLL for the entire dataset is:

NLL =
∑
s

NLL(s) =
∑
s

∑
c

πcP
(c)
s (15)

We optimize the NLL using a generalized EM algorithm [2], using exact E-steps and gradient de-
scent M-steps. Each individual s has a soft-assignment variable γs,c corresponding to the probability
that the individual lies in cluster c. It is updated during the E-step:

γs,c ←
P

(c)
s∑
x P

(x)
s

(16)

The generalized M-step consists of three updates. First, the cluster probabilities are updated:

πc ←
∑
s γs,c
S

(17)
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where S is the total number of individuals. Second, the parameters ρ of the individual clusters are
set by minimizing the expected NLL of the individual clusters with respect to ρ:

Q(ρ1:C , α,u,v)
.
=

∑
s,c

γs,c logP
(c)
s (18)

=
∑
s,c

γs,c

K(s)∑
k=2

logP (Lsk|Lsk−1, c) (19)

=
∑
c

∑
s

γs,c
∑
ijτ

Ns
ijτ logP

(c)
ijτ (20)

where .
= indicates the omission of additive constants. Note that the individual clusters are separate

in this summation, so that the optimization can be broken into C separate optimizations, one for
each cluster, where the contribution of user s to cluster c is weighted by γs,c. Performing the
conjugate gradient optimization in parallel on multiple cores takes no more time than optimizing the
non-clustered model.

Third, to optimize the shared parameters, we observe that the derivative of Q(θ1:C , α,u,v) is a
linear combination of derivatives that we can compute since they are analogous to the derivatives of
the NLL of the single-cluster model. For example,

∂Q(ρ1:C , α,u,v)
∂ui

=
∑
c

∑
s

γs,c
∂

∂ui

∑
ijτ

Ns
ijτ logP

(c)
ijτ (21)
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