Learning Latent Factor Models of Human Travel: Appendix

Michael Guerzhoy\(^1,3\) Aaron Hertzmann\(^2,3\)
\(^{1}\)LEAR, INRIA Grenoble \(^{2}\)Adobe Systems, Inc \(^{3}\)University of Toronto

Abstract

In this document, we provide details on fitting the models described in [1]. We show how to compute the partial derivatives of the Negative Log-Likelihood (NLL) of the data under a single-cluster model in order to use them for conjugate gradient optimization. We then show how to optimize the NLL under the multiple-cluster model using a generalized EM algorithm.

1 The Single-Cluster Model

Recall that in our single-cluster model, the probability of transitioning from \(i\) to \(j\) in time interval \(\tau\) is given by:

\[
P_{ij\tau} = \frac{\exp (\rho(d_{ij}, \tau) + \alpha_j + u_i^T v_j)}{\sum_\ell \exp (\rho(d_{i\ell}, \tau) + \alpha_\ell + u_i^T v_\ell)}
\]

(1)

The Negative Log-Likelihood (NLL) of the data under the single-cluster model is then:

\[
NLL = -\log \prod_{ij\tau} (P_{ij\tau})^{N_{ij\tau}} = -\sum_{ij\tau} N_{ij\tau} \log P_{ij\tau}
\]

(2)

\[
= -\sum_{ij\tau} N_{ij\tau} \left[\rho(d_{ij}, \tau) + \alpha_j + u_i^T v_j - \ln \sum_\ell \exp (\rho(d_{i\ell}, \tau) + \alpha_\ell + u_i^T v_\ell) \right]
\]

(3)

\[
= -\sum_{\tau d} N_{\tau d} \rho(d, \tau) - \sum_j N_j \alpha_j - \sum_{ij\tau} N_{ij\tau} u_i^T v_j + \sum_{ij\tau} N_{ij\tau} \ln \sum_\ell \exp (\rho(d_{i\ell}, \tau) + \alpha_\ell + u_i^T v_\ell)
\]

(4)

Here, \(N_{ij\tau}\) is the number of transitions from \(i\) to \(j\) in time interval \(\tau\) (recall that the map as well as the time and the distances are discretized) and \(d_{ij}\) is the (discretized) distance between \(i\) and \(j\). We abuse notation slightly by indicating different marginal histograms of \(N\) by different subscripts: \(N_{\tau d}\) is the number of transitions over distance \(d\) in time interval \(\tau\), and \(N_j\) is the number of transitions that end at destination \(j\).
Taking derivatives with respect to the model parameters yields:

\[
\frac{\partial \text{NLL}}{\partial \alpha_j} = -N_j + \sum_{i\tau} N_{i\tau} \frac{\exp(\rho(d_{ij}, \tau) + \alpha_j)}{\sum_{\ell} \exp(\rho(d_{i\ell}, \tau) + \alpha_{\ell})} \tag{5}
\]

\[
= -N_j + \sum_{i\tau} N_{i\tau} P_{ij\tau} \tag{6}
\]

\[
\frac{\partial \text{NLL}}{\partial \rho_{\tau d}} = -N_{\tau d} + \sum_{ij} N_{ij\tau} \frac{\sum_{E:d_{ij}=d} \exp(\rho(d_{i\ell}, \tau) + \alpha_{\ell})}{\sum_{\ell} \exp(\rho(d_{i\ell}, \tau) + \alpha_{\ell})} \tag{7}
\]

\[
= -N_{\tau d} + \sum_i N_{i\tau} P_{i\tau d} \tag{8}
\]

\[
\frac{\partial \text{NLL}}{\partial u_i} = -\sum_{j\tau} N_{ij\tau} v_j + \sum_{j\tau} N_{ij\tau} \sum_{\ell} v_{\ell} P_{i\ell\tau} \tag{9}
\]

Note that the derivatives with respect to the model parameters \(\rho\) and \(\alpha\) (Eqs. 6 and 8) can be naturally interpreted as the difference between the expected counts of transitions and the observed counts of transitions:

\[
-N_j + \sum_{i\tau} N_{i\tau} P_{ij\tau} = -N_j + E[N_j] \tag{10}
\]

\[
-N_{\tau d} + \sum_i N_{i\tau} P_{i\tau d} = -N_{\tau d} + E[N_{\tau d}] \tag{11}
\]

2 The Multiple-Cluster Model

Under the Cluster model, the probability of the trajectory \(L_{s1}^1, L_{s2}^2, ..., L_{sk}^K(s)\) of individual \(s\) is

\[
P_s^{(c)} = P(L_{s1}^1) \prod_{k=2}^{K(s)} P(L_{sk}^k|L_{sk-1}^k, \tau_{k-1}, c) \tag{12}
\]

\[
= P(L_s^c) \prod_{k=2}^{K(s)} P_{L_{sk-1}^k L_{sk}^k \tau_{k-1}} \tag{13}
\]

where \(P^{(c)}\) corresponds to \(P\) in Eq. 1, as parametrized by cluster \(c\). The NLL for a single individual \(s\) is then

\[
\text{NLL}(s) = \sum_c \pi_c P_s^{(c)} \tag{14}
\]

where \(\pi_c\) is the prior probability of cluster \(c\). The NLL for the entire dataset is:

\[
\text{NLL} = \sum_s \text{NLL}(s) = \sum_s \sum_c \pi_c P_s^{(c)} \tag{15}
\]

We optimize the NLL using a generalized EM algorithm [2], using exact E-steps and gradient descent M-steps. Each individual \(s\) has a soft-assignment variable \(\gamma_{s,c}\) corresponding to the probability that the individual lies in cluster \(c\). It is updated during the E-step:

\[
\gamma_{s,c} \leftarrow \frac{P_s^{(c)}}{\sum_x P_x^{(c)}} \tag{16}
\]

The generalized M-step consists of three updates. First, the cluster probabilities are updated:

\[
\pi_c \leftarrow \frac{\sum_s \gamma_{s,c}}{S} \tag{17}
\]
where \(S \) is the total number of individuals. Second, the parameters \(\rho \) of the individual clusters are set by minimizing the expected NLL of the individual clusters with respect to \(\rho \):

\[
Q(\rho_{1:C}, \alpha, \mathbf{u}, \mathbf{v}) = \sum_{s,c} \gamma_{s,c} \log P_{*}^{(c)}
\]

\[
= \sum_{s,c} \gamma_{s,c} \sum_{k=2}^{K(s)} \log P(L_{k}^{s}|L_{k-1}^{s}, c)
\]

\[
= \sum_{c} \sum_{s} \gamma_{s,c} \sum_{ij \tau} N_{ij \tau}^{s} \log P_{ij \tau}^{(c)}
\]

where \(\doteq \) indicates the omission of additive constants. Note that the individual clusters are separate in this summation, so that the optimization can be broken into \(C \) separate optimizations, one for each cluster, where the contribution of user \(s \) to cluster \(c \) is weighted by \(\gamma_{s,c} \). Performing the conjugate gradient optimization in parallel on multiple cores takes no more time than optimizing the non-clustered model.

Third, to optimize the shared parameters, we observe that the derivative of \(Q(\theta_{1:C}, \alpha, \mathbf{u}, \mathbf{v}) \) is a linear combination of derivatives that we can compute since they are analogous to the derivatives of the NLL of the single-cluster model. For example,

\[
\frac{\partial Q(\rho_{1:C}, \alpha, \mathbf{u}, \mathbf{v})}{\partial \mathbf{u}_{i}} = \sum_{c} \sum_{s} \gamma_{s,c} \frac{\partial}{\partial \mathbf{u}_{i}} \sum_{ij \tau} N_{ij \tau}^{s} \log P_{ij \tau}^{(c)}
\]

References
