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Abstract. We describe latent factor probability models of human travel, which
we learn from data. The latent factors represent interpretable properties: travel
distance cost, desirability of destinations, and affinity between locations. Individ-
uals are clustered into distinct styles of travel. The latent factors combine in a
multiplicative manner, and are learned using Maximum Likelihood.
We show that our models explain the data significantly better than histogram-
based methods. We also visualize the model parameters to show information
about travelers and travel patterns. We show that different individuals exhibit
different propensity to travel large distances. We extract the desirability of des-
tinations on the map, which is distinct from their popularity. We show that pairs
of locations have different affinities with each other, and that these affinities are
partly explained by travelers’ preference for staying within national borders and
within the borders of linguistic areas. The method is demonstrated on two sources
of travel data: geotags from Flickr images, and GPS tracks from Shanghai taxis.

1 Introduction

Understanding human travel and mobility is a key component of understanding individ-
uals and societies. In the past few years, researchers in many different disciplines have
looked to online social media datasets as new sources of information about how we
move from place to place. Good models of this data could yield new scientific insights
into human behavior [1, 8, 11]. Furthermore, tools for analysis and prediction of move-
ment can be useful for numerous applications. For example, travel models can help in
predicting the spread of disease [6, 15]; surveying tourism [9, 10], traffic [2, 14], and
special events mobility for urban planning [3]; geolocating with computer vision [4,
16]; interpreting activity from movements [19, 22]; and recommending travel [7, 17].
Analysis of travel data can also play a role within the larger context of analysis of so-
cial network data. More recent work has explored the value of social network and taxi
trajectory data for predicting mobility [5] and knowledge discovery [23].

Previous work has generally employed two kinds of models to describe human
travel probabilities. First, scientists have employed the Lévy flight, a stochastic pro-
cess model [1, 11]. This model captures the heavy-tailed nature of travel, but ignores
the actual locations being visited. Second, one can build probability tables based on
empirical travel histograms [4, 6, 9, 10, 15, 16]. Such models are more accurate than
simple stochastic process models, but require enormous datasets while revealing little



about the underlying structure of the data. Detailed models have also been developed
for some specialized applications (e.g., [14, 19]).

This paper describes an approach to building structured models of human travel,
using spatially-varying and individual-varying latent factors. The main idea is to model
travel probabilities as functions of spatially-varying latent properties of locations and
the travel distance. The latent factors represent interpretable properties: travel distance
cost, desirability of destinations, and affinity between locations. Moreover, individuals
are clustered into clusters with distinct travel models. The latent factors combine in
a multiplicative manner, and are learned using Maximum Likelihood. The resulting
models exhibit significant improvements in predictive power over previous methods,
while also using far fewer parameters than histogram-based methods.

We present our approach as a family of models of increasing generality, similar
to the use of multiplicative models in social network analysis [13]. While there are
many factors in travel that we have not incorporated into the model, the multiplicative
formulation easily lends itself to incorporating additional latent factors and sources of
information.

Our model allows us to analyze the different “factors” separately. We visualize and
analyze the propensity to travel long distance of different user clusters, independently
of the locations to which they travel. We show that the desirabilities of the locations
on the map are distinct from the number of transitions to those locations, partly since
some desirable locations are more remote. We analyze the affinities between the dif-
ferent locations, independently of the desirability of the locations and the distances
between locations. In particular, the affinities our model learns are stronger, on aver-
age, for pairs of locations inside national borders, and for some languages, for pairs of
locations within the same linguistic areas.

2 Background

Suppose we discretize the world into J locations, and we observe an individual at lo-
cation i. We wish to predict where that individual is likely to be after a certain time
interval τ : Pijτ ≡ P (Lnext = j|Lcurrent = i,∆T = τ) .

Like most previous work, we make the simplifying assumption that human travel
can be treated as a Markov process. We also discretize all continuous quantities: τ
represents one of a fixed set of time interval bins, and i and j represent location bins
(quads) on the map.

To date, two general kinds of models have been applied to human travel. First,
scientists have employed the Lévy flight, a stochastic process model [1]. In particular,
the marginal probability distribution of traveling a distance d in some fixed time interval
is given by a truncated power law:

p(d) ∝ d−b (1)

for a parameter b. This model captures the heavy-tailed nature of travel: long-distance
travel is rare but not surprising. A truncated power law [11] can be used to model limits
in travel. These simple parametric models can be interpreted to yield insights into travel



behavior; however, they assume that travel probabilities depend only on the travel dis-
tance. Destinations that are equidistant from one’s current location are equally likely,
regardless of whether they are in New York City or in the Arctic.

Second, one can build probability tables based on empirical travel histograms [4, 6,
9, 10, 15, 16]. For example, Kalogerakis et al. [16] use counts of actual transitions in a
database of 6 million travel records. Letting Nijτ be the number of observed transitions
from location i to location j in time interval τ , and Ndτ be the number of observed
transitions over distance d in time interval τ , they set

Pijτ =
Nijτ + λqdijτ∑
`(Ni`τ + λqdi`τ )

(2)

where dij is the distance between locations i and j. The histogram is regularized by the
term qdτ = Ndτ∑

δ Nδτ
, which corresponds to the probability of traveling a given distance d

in time interval τ in the training set, with a constant factor λ set using cross-validation.
Such models are more accurate than simple stochastic process models, but require enor-
mous datasets while revealing little about the underlying structure of the data.

Our work aims to combine the advantages of the two approaches described above,
while extending them to yield new generality.

3 The Datasets

We consider two datasets. The first dataset comprises the publicly-available Flickr.com
image streams of 75,250 distinct individuals, collected by Kalogerakis et al. [16]; there
are about 6 million images in total in the dataset. Each image is accompanied by a
timestamp, and a geotag specifies the location where the picture was taken. We con-
sider only the geotags and the time intervals between consecutive geotags. As done
by Kalogerakis et al., we discretize the Earth into 3186 bins, each of which is approxi-
mately 400km×400km in size. An individual’s trajectory is the sequence of transitions
between the locations of the individual’s photos.

The second dataset comprises taxi travel data, collected by Peng et al. [20]. We
use the taxi trips recorded on Feb. 1, 2007. A trip (transition) begins or ends when
the taxi changes its status from “occupied” to “vacant” or vice versa; we calculate the
duration of each trip. The dataset, which we split into a training set and a test set,
consists of 2,000 taxis which take about 287,000 trips in total. We discretize the area
around Shanghai served by the taxis in the dataset (30◦N to 32◦N, 120◦E to 122◦E)
into 50× 50 quads using a rectangular grid.

The locations on the map differ in popularity (see Fig. 2). In the Flickr dataset, we
observe there are more transitions to locations in the coastal United States, Western Eu-
rope, Australia, and Japan than to locations elsewhere on the map. In the taxi dataset,
there are more transitions to locations in downtown Shanghai. The variation in the prob-
ability of transitioning from a given source to a given destination is not determined by
the distance between the source and the destination alone. Individuals in our datasets
exhibit travel patterns that are distinct from one another; see Fig. 1.
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Fig. 1. Histogram of different individuals travel propensities. For a given distance and timeframe,
and for a given probability, each bar in a histogram represents the number of individuals who
travel the distance within the timeframe with the given probability.

4 Basic Model: Distance Cost and Desirability

The model can be motivated by observing that one is usually more likely to travel to
nearby destinations than to further ones, but that certain destinations are more popular
than others. For example, New York is almost always a local peak compared to its
neighbors, whereas the ocean is never a destination. We note that there is a “logical-
AND” relationship between these factors: undesirable destinations (like the ocean) are
never visited no matter how close; highly-desirable destinations (like New York) are
never visited if they are simply too far to be reached within the given time interval. This
relationship suggests the use of a multiplicative model to combine these factors.

In particular, we consider the following multiplicative model:

Pijτ =
r(dij , τ) aj∑
` r(di`, τ) a`

(3)

The model consists of two terms. First, the distance factor r(d, τ) captures the de-
pendence of travel on the distance dij between locations i and j and the transition
time τ . For a given τ , this term mimics the power-law terms used in previous work
(Eq. 1). Second, the spatially-varying aj term represents the desirability of the des-
tination j. While not representing literal “desirability,” it reflects that fact that some
destinations attract more travel than others. For convenience, we define the parameters
ρ(d, τ) = log r(d, τ) and αj = log aj . And we write the log-probability of traveling to
location j from location i as logPijτ

.
= ρ(dij , τ) + αj . (The symbol .= indicates that

we have omitted the normalization term.)
The quantities d and τ are discretized, and the functions ρ(d, τ) and αj are each

represented as 2D look-up tables. This method can be viewed as a form of “logistic
PCA” [21] applied to travel data, taking the structure of the problem into account. The
model can also be viewed as a special case of logistic regression, because the proba-
bility Pijτ is linear in the parameters r and a. In particular, the model can be written
as Pijτ ∝ exp(θTφijτ ), where θ = [vec(ρ)T , vec(α)T ]T , and φijτ is a vector of
indicator variables.

For our problem, the size of the dataset dwarfs the number of model parameters,
which suggests that Maximum Likelihood should be sufficient for learning. We estimate
the α and ρ parameters from the data, by minimizing the negative log-likelihood using



Most popular Most popular
1. London 1. South Shaanxi Rd.
2. New York 2. North Zhongstan Rd.
3. San Francisco 3. Zhongstan Park
4. Paris 4. Xiaonanmen
5. Milan 5. Guilin Rd.
6. Washington, DC 6. Linping Rd.
7. Vancouver 7. Sci. & Tech. Museum
8. Chicago 8. Xincun Rd.

Most desirable Most desirable
1. London 1. South Shaanxi Rd.
2. New York 2. North Zhongstan Rd.
3. Brussels 3. Xiaonanmen
4. San Francisco 4. Zhongstan Park
5. Paris 5. Guilin Rd.
6. Frankfurt 6. Shanghai Airport
7. Sydney 7. Sci. & Tech. Museum
8. Melbourne 8. Longbai Xincun

Fig. 2. The popularity (count of inbound transitions) and desirability (our learned parameter α) of
destinations, with the top locations displayed. Desirability and popularity are related but distinct.
On the Shanghai map, strong red means very large and strong green means very small. Quads in
Shanghai identified by Metro stations, except for Shanghai Airport.

the conjugate gradient method. The negative log-likelihood of the data is:

NLL = − log
∏
ijτ

(Pijτ )
Nijτ = −

∑
ijτ

Nijτ logPijτ (4)

Here, Nijτ is the number of observed transitions from i to j in time interval τ . The
equivalence to logistic regression shows that the negative log-likelihood is convex.

5 Location Affinities

We expect that similarities between locations would play a role in travel. For example,
we expect that people are more likely to stay in their own countries than to cross borders,
and, when leaving their country, they are more likely to visit countries where the same
language is spoken as in their home country. We can express this by assigning a low-
dimensional latent parameter vectors uj , vj to each location j (for a discussion of why
an asymmetric factor is useful, see [12]) . A low-dimensional vector is used, typically
uj ,vj ∈ R4. The transition probability is then given by logPijτ

.
= ρ(dij , τ) + αj +

uTi vj . The log-likelihood of a transition is then:

logPijτ
.
= ρ(dij , τ) + αj + uTi vj (5)

The learned models are shown in Figs. 2 and 3.

6 Clustering Individuals

We incorporate the observation that travel varies between individuals [11] by clustering
individuals into C clusters. Each cluster has its own distance factor functions ρ(c). We
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Fig. 3. The learned distance factors for the Flickr and Shanghai taxi datasets, for selected time
intervals out of a total of 23 and 13 respectively.

assume that each individual travels according to the parameters of one cluster, and that
an individual belongs to cluster c with prior probability πc, such that

∑
c πc = 1. The

other parameters α,u,v are shared across all clusters; we experimented with clustering
them as well, but this did not lead to increased performance.

The probability of an individual’s travel trajectory visiting locationsL1:K , given that
the individual is a member of cluster c, is P (c)

1:K = P (L1)
∏k
k=2 P

(c)(Lk|Lk−1, τk−1, c)
where P (c) corresponds to Pijτ in Eq. 5, as parametrized by cluster c. We use a uniform
distribution over bins for the start probability P (L1). The probability of an individual’s
entire trajectory of K locations, marginalized over the possible cluster assignments is

P1:K =
∑
c

πcP
(c)
1:K (6)

Some learned ρ values for the different clusters are shown in Fig. 4.

7 Fitting the Models

Our single-cluster model is given by Eq. 5. The Negative Log-Likelihood (NLL) of the
data under the single-cluster model is then
NLL = − log

∏
ijτ (Pijτ )

Nijτ =
−
∑
τdNτdρ(d, τ)−

∑
j Njαj +

∑
ijτ Nijτ log

∑
` exp(ρ(di`τ) + α`).

Taking derivatives with respect to the model parameters yields:

∂NLL
∂αj

= −Nj +
∑
iτ Niτ

exp(ρ(dij ,τ)+αj)∑
` exp(ρ(di`,τ)+α`)

= −Nj +
∑
iτ NiτPijτ ,

∂NLL
∂ρτd

= −Nτd +
∑
ij Nijτ

∑
`:di`=d

exp(ρ(di`,τ)+α`)∑
` exp(ρ(di`,τ)+α`)

= −Nτd +
∑
iNiτPiτd,

∂NLL
∂ui

= −
∑
jτ Nijτvj +

∑
jτ Nijτ

∑
` v`Pi`τ .

We optimize the NLL of the training data using the conjugate gradient method to fit
the model.
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Fig. 4. Sample learned ρ values for different clusters for the Flickr and Shanghai taxi datasets for
a set time period. The prior probability of each cluster is given in the legend. Note the markedly
different probabilities for traveling less than 3km for the different clusters for the Shanghai taxi
dataset. For the Flickr dataset, Cluster 1 exhibits more propensity for traveling mid-range travel
distances than the other models, and Cluster 2 exhibits less propensity for traveling mid-range
travel distances than the other models.

For the Cluster model (Equation 6), we optimize the NLL using a generalized EM
algorithm [18], using exact E-steps and gradient descent M-steps.

8 Results

We first analyze our models quantitatively and show that they demonstrate improved
explanatory power as compared to the baseline model. We then analyze the parameters
of the models.

8.1 The Predictive Power of the Models

We test the algorithm on the Flickr dataset by splitting individuals into test and training
sets, with 52,769 individuals in the training set and 11,149 individual in the test set; we
set the dimensionality of the u and v vectors to 4. We discretize time into 23 intervals.
We use 737 taxis from the Shanghai taxi dataset for training and 1,018 taxis for the
test set; the dimensionality of u and v is 4, and we discretize time into 13 intervals.
We obtain the results shown in Table 1. Throughout, we compute the negative log-
likelihood (NLL) of each test individual’s transitions according to the learned models.
For the Cluster model, we compute the likelihood of each individual trajectory (see
Eq. 6); for comparison purposes, we compute the NLL of each transition separately by
marginalizing over clusters and present the test NLL obtained by summing the NLLs of
all the transitions, as in Eq. 4:

NLL = −
∑
ijτ

Nijτ log
∑
c

πcP
(c)
ijτ (7)



Note that, for the non-Cluster models, the NLL of an individual’s trajectory is al-
ways simply the sum of the NLLs of all the transitions in the trajectory (cf. Eq. 4).

Our models yield significantly better NLLs than the histogram models, while using
orders-of-magnitude fewer parameters. We see performance improve as we use more
sophisticated models, with the Cluster model giving the best predictions. Note that,
for the Cluster model, the gain is obtained due to the fact that we marginalize the entire
travel trajectory of each individual over cluster assignments. If we ignore the fact that all
the transitions in a trajectory were generated by a single individual (“Cluster, indep.”),
there is no gain in the train likelihood over the Affinity model, and the test NLL is
slightly worse. This is to be expected, since we have a non-parametric (binned) ρ, and
model averaging does not increase the effective number of parameters much.

Taxi dataset Flickr dataset
Model Parameters Train NLL Test NLL Parameters Train NLL Test NLL

Histogram (Eq. 2) 1,004,692 236.1 511.8 26,332,700 15.76 47.27
Reg. Histogram (Eq. 2) 1,004,692 251.0 279.0 26,332,700 17.36 21.53

Latent model (Eq. 3) 1,578 272.2 276.1 3,370 19.90 20.00
Affinity model (Eq. 5) 3,802 264.6 270.1 11,930 18.95 19.10
Cluster model (Eq. 6) 9,002 232.0 231.8 21,130 18.43 18.66
Cluster, indep. (Eq. 7) 9,002 263.2 271.1 21,130 18.95 19.28

Table 1. NLL per user for the Shanghai and Flickr datasets. The number of parameters is calcu-
lated by excluding parameters that pertain to map quads that are never visited.

The main reason for the improvement due to the parametric methods is that the
histogram-based methods are very statistically inefficient, whereas the factored models
can generalize. For the Flickr dataset, the full histogram contains 231 million entries,
which would require enormous datasets to accurately estimate. Indeed, in the learned
histogram, only 97,190 of the entries are non-zero. To see the benefit of the parametric
model, consider all the possible self-transitions (i.e., transitions from bin i to i) in the
test set that do not occur in the training set. The contribution from these transitions to
the test NLL is 1.18e3 under the Regularized Histogram model and 495.08 under the
Affinity model. The differences in the transition probabilities can be quite significant.
For example, the probability of the Tabriz→ Tabriz transition in 30 to 60 days is 0.04
under the Regularized Histogram model and 0.14 under the Affinity model. Transitions
that take more than 30 days are rare, but our model is able to infer a better transition
probability by using data from shorter transitions.

8.2 Popularity vs. Desirability

We learned the desirability for each location on the maps. The desirabilities and the
popularities (the number of inbound transitions to the location) of a location are related
but distinct: see Fig. 2. A partial explanation of the difference is the remoteness of some
locations: Sydney and Melbourne are in the top ten most desirable destinations, but are



less popular because of their remoteness. The Shanghai Airport is also remote and more
desirable than popular.

8.3 Affinity Factors

Analyzing affinity factors (uTi vj) between pairs of locations allows us to discover affini-
ties between locations that are not accounted for by proximity and desirability. For ex-
ample, there is obviously more traffic than the average between Russian-speaking cities
because some of them are desirable and they are all located in or near Russia. However,
by analyzing our learned model we find that there is more traffic between Russian-
speaking cities than we would expect based on the proximity between them and their
popularity alone.

For the Flickr dataset, we show that our model captures the fact that locations within
national borders have higher affinity with each other than the average. We show that the
same holds for some linguistic areas. The mean log-affinity factors within and across
nation boundaries are plotted in Fig. 5. As expected, the model learns that, on average,
locations within the same national boundaries have higher affinities with each other.
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Fig. 5. The mean log-affinity factors within and across national boundaries. For distaces larger
than 6000 km, very few location pairs are available.

We explore the affinities for pairs of locations which share an official language,
but which are located in different countries. In Fig. 6, we observe a clear pattern where
affinities are higher for pairs of Spanish-speaking locations in different countries. There
is a clear pattern for Russian. For other languages, there is no clear pattern.

High affinities between locations that are not within the same national or subnational
unit may indicate an interesting connection between the locations. For example, the
second highest affinity for the Flickr dataset is between Mauritius and Réunion, two
nearby islands with similar histories. Other, not as easily explainable, examples from



the list of the highest 100 affinities are Hilo (Hawaii)→Vancouver, Glasgow→Miami,
and Tunis→Sassari (Sardinia).

8.4 Travel Distance Cost

The ρs for the different clusters, for a single time interval, are shown in Fig. 4. We have
obtained clusters that are different from one another: for the Flickr dataset, one cluster
(Cluster 1 in Fig. 4) assigns much higher probability to mid-range distances than the
other clusters, and one cluster (Cluster 2) assigns them lower probability than the other
clusters. In the Shanghai taxi dataset, the clusters have different probabilities of staying
roughly in place: the ρ values for the 5 different clusters for a distance smaller than 3km
and a time interval of 1 hour are 5.8, 4.8, 7.7, 4.6, and 5.0; for the location centered at
31.22◦N 121.46◦E (selected to serve as an example), the corresponding probabilities
under the five cluster models are 0.32, 0.25, 0.76, 0.24, and 0.22.

9 Conclusions

We have described several latent factor models of human travel. In contrast to pre-
vious approaches to modeling human travel data, our model represents interpretable
properties of human travel: travel distance cost, desirability of destinations, and affinity
between locations. The resulting models exhibit significant improvements in predictive
power over previous methods, while also using far fewer parameters than histogram-
based methods.

The parameters of our model are interpretable. We are able to describe the propen-
sity to travel long distances of different clusters of individuals. We contrast the popu-
larity and the desirability of locations, and show that they are distinct. By “factoring
out” the desirability of locations and the distance to them, we can analyze the affinities
between locations. Our model successfully learns the fact that locations that are located
within the same country have higher affinity than the average. We explore the affinities
of locations located across national borders, but which share an official language. We
see that for pairs of locations where the official language is Spanish and Russian, the
affinities are higher than average.

Statistical modeling of human society has become a major theme in recent years,
yielding both new insights and predictive abilities. Travel is one of the pieces of this
puzzle, and the statistical models here can be used in concert with models of other
properties. For example, when modeling photo-collections in online datasets, the speed
and location of travel will be correlated to the types of pictures taken, as well as to
individual identity, both of which can be useful cues for recognition and tagging of
image content (see, e.g., [16]). Furthermore, the use of latent models can be useful for
making predictions in new situations. For example, the effects of world events on world
travel could be predicted by adjusting the latent factors accordingly, which could be
useful in epidemic forecasting [6, 15].
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Fig. 6. Mean log-affinity factors for individual official languages, compared to the mean log-
affinity factors for locations where the official languages are different. Note that the data is very
noisy for larger distances because the mean is based on very few datapoints.
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