
C4M Homework: Week 2, Part 2: Loops

For some of these problems, you will submit your solutions on MarkUs https://markus.cdf.toronto.edu/c4m-2016
as you did for the homework for workshop 1. For others you will submit on PCRS, https://teach.cdf.toronto.
edu/c4m as you did for part 1 of the homework for workshop 2.

1. A list represents the queue of patients who signed up to see a doctor at a walk-in clinic. A patient would
sometimes sign up twice in a row by mistake. Write a function with the signature two_in_a_row(queue)

that returns True if a list contains the same name twice in a row, and False otherwise. For example,
two_in_a_row(["Mike G.", "Alice C.", "Bob A.", "Bob A.", "Mary C."]) should return True, since the
string "Bob A." appears twice in a row, but two_in_a_row(["Sam A.", "Dorothy Z."]) should return False.

Submit the function on PCRS in the Workshop 2 Homework 2 quest.

2. A patient’s blood pressure is measured at every check-up, and is recorded as "low", "high", or "normal". The
date of each check-up is also recorded. We are interested in knowing the date on which a sequence of 3 or more
"high" measurements has started,

Write a function with the signature onset_high_blood_pressure(bp, dates) which returns the date of the
first time that a sequence of three or more "high" measurements was observed. If there is no such sequence,
return the string "No high blood pressure period observed".

For example, if

bp = ["low", "low", "high", "normal", "high", "high", "high", "high", "normal"]

dates = ["12/3", "20/3", "29/3", "5/4", "15/4", "30/4", "10/5", "17/5", "29/5"]

onset_high_blood_pressure(bp, dates) should return 15/4.

Write your function in Pyzo. Test it with the example above. Then write some other test cases for your function.
One rule that is sometimes used for testing, is that your full set of tests must at least execute every line of code
in your function. That way no line goes completely untested. Make sure that your tests do this at a minimum.
Put your function in a file bp.py and submit it on MarkUs.

3. A patient’s core body temperature is recorded at regular intervals, and stored as a list of floats. Write a
function with the signature consistent_growth_at_least_5(temps) that returns True iff there was a period
of at least 5 hours during which the temperature increased every hour.

Submit the solution to this problem on PCRS where we have provided some tests. We recommend that you
design your solution and do your own initial testing on Pyzo before working in PCRS.

4. Write a function with the signature starts_with(s1, s2) that takes in two strings s1 and s2, and returns True
if s1 starts with s2 and False otherwise.

Submit this function on MarkUs in a file named prefix.py.

5. Ultimately this problem is to write a function with the signature match_dna(seq1, seq1) that takes in two
dna sequences (as strings), and returns True if ond of them is a subsequence of the other (i.e., if seq1 is a
subsequences of seq2, or vice versa). In order to write your solution, you must use a function match_at at every
possible index (using a for-loop).

This problem is on PCRS. First we ask you to code match_at and then in the next question we provide our
solution to match_at in the starter code for match_dna. In your solution to match_dna, don’t change match_at,
just use it.

We have also posted 2 videos that together walk through the development of our solution to match_at. If you
have trouble with your own match_at, you are encouraged to go ahead and watch the videos even if your solution
doesn’t pass all the test cases. You’ll get more out of the video though if you at least attempt match_at.

6. A patient’s core body temperature is recorded at regular intervals, and stored as a list of floats. Write a
function with the signature consistent_growth_exact_n(temps, n) that returns True iff there was a period
of exactly n hours during which the temperature increased every hour. (I.e., if the temperature increased n+1
periods, it doesn’t count.)

Write your code on Pyzo and include the function in a file called growth.py. In addition to the function
definition, the file should have at least 3 calls to the function on different test input values. Submit your file on
MarkUs.


