Multilevel/Hierarchical Models II

Lim Wai Yee, The Hanging Gardens of Babylon

SML480: Pedagogy of Data Science, Spring 2020

Item-response (Rasch) model

- J persons, K items
- $y_i = 1$ if the response is correct
- Model: $P(y_i = 1) = \sigma(\alpha_{j[i]} \beta_{k[i]})$
 - a_i is the ability of person j
 - β_k is the difficulty of problem k
- Non-identifyable: can increase the alphas and the betas by a constant and get the same probabilities
 - Can subtract the mean alpha to deal with this

Multilevel model

- $\alpha_i \sim N(0, \sigma_\alpha^2)$
- $\beta_j \sim N(\mu_\beta, \sigma_\beta^2)$
- μ_{α} set to 0 to avoid non-identifyability

Item specific "discrimination" parameter

•
$$P(y_i = 1) = \sigma(\gamma_{k[i]}(\alpha_{j[i]} - \beta_{k[i]})$$

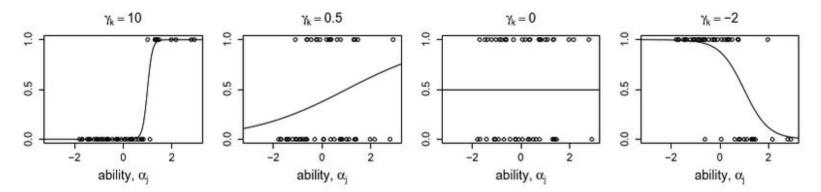
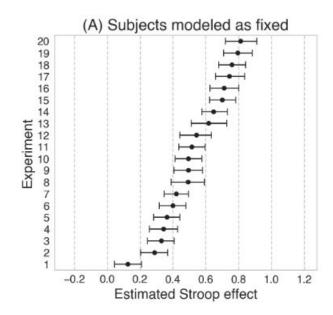


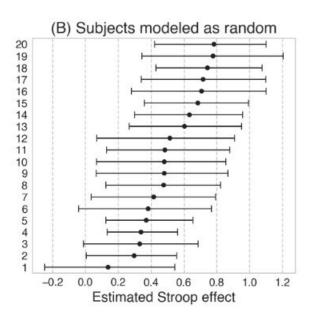
Figure 14.14 Curves and simulated data from the logistic item-response (Rasch) model for items k with "difficulty" parameter $\beta_k = 1$ and high, low, zero, and negative "discrimination" parameters γ_k .

•
$$P(y_i = 1) = \sigma(\gamma_{k[i]}(\alpha_{j[i]} - \beta_{k[i]})$$

• Identifyability problems?

Stroop task


Stroop Task 1 READ THE WORDS		Stroop Task 2 SAY THE COLOUR OF THE INK		Stroop Task 3 SAY THE COLOUR OF THE INK	
ED	BLUE	xxxx	xxxx	RED	BLUE
LUE	RED	xxxx	xxxx	BLUE	RED
EEN	GREEN	xxxx	xxxx	GREEN	GREEN
ED	GREEN	XXXX	XXXX	RED	GREEN
EEN	BLUE	xxxx	xxxx	GREEN	BLUE
LUE	GREEN	XXXX	xxxx	BLUE	GREEN
LUE EEN ED EEN	RED GREEN GREEN BLUE	XXXX XXXX XXXX	XXXX XXXX XXXX	GREEN RED GREEN	GRE GRE BLI


Strawman model

- $y_{ij} = \beta_0 + \beta_1 X_{ij} + e_{ij}, e_{ij} \sim N(0, \sigma_e^2)$
 - y_{ij} : reaction time of of i-th subject, j-trial
 - X_{ij} : congruent/incongruent condition for i-th subject j-th trial

Model 2

•
$$y_{ij} = \beta_0 + \beta_1 X_{ij} + u_{0i} + u_{1i} X_{ij} + e_{ij}$$

 $u_{0i} \sim N(0, \sigma_{u0}^2)$
 $u_{1i} \sim N(0, \sigma_{u1}^2)$
 $e_{ij} \sim N(0, \sigma_e^2)$

Yarkoni's argument #1

- In the first model, rejecting $\beta_1 = 0$ means that it is unlikely for the particular subjects we observe that there was no difference between congruent/non-congruent conditions
- In the second model, rejecting $\beta_1 = 0$ means that for subjects as modeled by Model 2, it is unlikely that there was no difference between congruent/non-congruent conditions

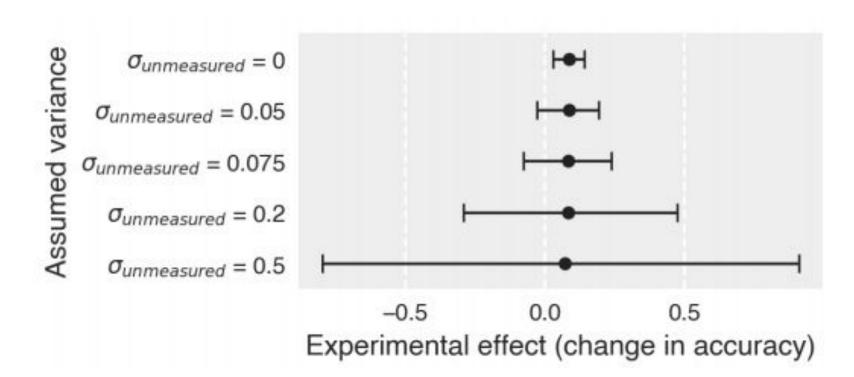
Yarkoni's argument #2

- Research subjects are not the only random effects: so are stimuli, experimenters, research sites, etc.
- Stimuli as non-random effects
 - Strictly speaking, any specific experiment shows that the particular stimuli used have an effect

The effect of stimuli as random

?

$$y_{ps} = \beta_0 + \beta_1 X_{ps} + u_{0s} + u_{1s} X_{ps} + u_2 X_{ps} + e_{ps}$$


$$u_{0s} \sim \mathcal{N}(0, \sigma_{u_0}^2)$$

$$u_{1s} \sim \mathcal{N}(0, \sigma_{u_1}^2)$$

$$u_2 \sim \mathcal{N}(0, \sigma_{u_2}^2)$$

$$e_{ps} \sim \mathcal{N}(0, \sigma_e^2)$$
(4)

Here, p indexes participants, s indexes sites, X_{ps} indexes the experimental condition assigned to participant p at site s, the β terms encode the fixed intercept and condition slope, and the u terms encode the random effects (site-specific intercepts u_0 , site-specific slopes u_1 , and the stimulus effect u_2). The novel feature of this model is the inclusion of u_2 , which would ordinarily reflect the variance in outcome associated with random stimulus sampling, but is constant in our dataset (because there's only a single stimulus).

Are subjects modeled correctly?

"Existence proof"

- Any particular study with a significant effect can be treated as evidence that a an interesting effect is observed under some circumstances
 - The Stanford prison experiment
 https://www.vox.com/2018/6/13/17449118/stanford-prison-experiment-fraud-psychology-replication
 - Milgram's electroshock test
- Less famous and more quantitative examples?
- https://www.pnas.org/content/111/23/8410

Where to go from here?

- "Do something else"
- "Embrace qualitative analysis"
- "Adopt better standards"
 - So, is this all about rhetoric in the abstract?
- Fit more expansive models + design with variation in mind
- Make riskier predictions
 - Stop affirming the consequent

17