SML480 Week 1 Meeting 3

2. Defining tidy data

Happy families are all alike; every unhappy family is unhappy in its own way

Leo Tolstoy

	treatmenta	$\frac{treatmentb}{}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

	John Smith	Jane Doe	Mary Johnson
treatmenta	_	16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

Data semantics

- Dataset: a collection of values
- A values is either a *variable* or an *observation*
- Variable: measure of an underlying attribute across units (height etc.)
 Observation: all values for one unit (the height etc. of one person)

name	trt	result
John Smith	a	-
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Tidy data: variables are columns, observations are rows

Data semantics

but it is surprisingly difficult to precisely define variables and observations in general. For example, if the columns in the Table 1 were height and weight we would have been happy to call them variables. If the columns were height and width, it would be less clear cut, as we might think of height and width as values of a dimension variable. If the columns were home phone and work phone, we could treat these as two variables, but in a fraud detection environment we might want variables phone number and number type because the use of one phone number for multiple people might suggest fraud. A general rule of thumb is that it is easier to describe functional relationships between variables (e.g., z is a linear combination of x and y, density is the ratio of weight to volume) than between rows, and it is easier to make comparisons between groups of observations (e.g., average of group a vs. average of group b) than between groups of columns.

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

Messy data

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Tidy (molten) data

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

country	year	column	cases	country	year	sex	age	Ca
AD	2000	m014	0	AD	2000	m	0-14	
AD	2000	m1524	0	AD	2000	\mathbf{m}	15-24	
AD	2000	m2534	1	AD	2000	m	25-34	
AD	2000	m3544	0	$\overline{\mathrm{AD}}$	2000	m	35-44	
AD	2000	m4554	0	AD	2000	\mathbf{m}	45-54	
AD	2000	m5564	0	AD	2000	\mathbf{m}	55-64	
AD	2000	m65	0	AD	2000	m	65+	
AE	2000	m014	2	\mathbf{AE}	2000	\mathbf{m}	0-14	
AE	2000	m1524	4	\mathbf{AE}	2000	\mathbf{m}	15-24	
AE	2000	m2534	4	\mathbf{AE}	2000	\mathbf{m}	25-34	
AE	2000	m3544	6	\mathbf{AE}	2000	\mathbf{m}	35-44	
AE	2000	m4554	5	\mathbf{AE}	2000	\mathbf{m}	45-54	
$^{ m AE}$	2000	m5564	12	$\mathbf{A}\mathbf{E}$	2000	\mathbf{m}	55-64	
AE	2000	m65	10	$\mathbf{A}\mathbf{E}$	2000	\mathbf{m}	65 +	
AE	2000	f014	3	\mathbf{AE}	2000	\mathbf{f}	0-14	

(a) Molten data

(b) Tidy data