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Announcements

• Midterm: Friday March 2nd, 6pm-8pm

– ROOMS: EX320 (A-Lin) EX300(Liu-Z)
Arrive a little early. Finish at 8:10pm

– ALT SITTING: should’ve received email from me

• Project 2: last (late) day to submit today

• Graduate Project Proposal Due Feb 28th
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The Midterm

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang
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Coverage

• Everything up to and including the EM tutorial
– We will not ask about PCA and decision trees on the 

midterm

• Lecture and tutorial content
• Projects 1 and 2

– Techniques rather than remembering detail

• Study guide problems
– At least one midterm question will be very closely 

related to a study guide problem

• Problem solving in the context of ML
– Thinking the lectures through should help
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Study Guide
• It looks daunting, but it should save you time

– Problems that are asking you what a slide or two 
in the lecture say

– Problems that are asking you to apply lecture 
content in a straightforward way

– A few problems that require problem-solving

• There are a lot fewer problems than there 
people in the class

– If everyone contributes the equivalent of 2 
solutions to the Google Doc, we’ll be in good 
shape 5



Additional Help

• Midterm Review Tutorial on Thursday 

• Lisa’s Office Hours: Thursday 10am-12pm
Michael’s Office Hours: Weds 6pm-7pm

• TA Office Hours: Eleni & Jackson

– Today 3pm-4pm

– Weds 5pm-6pm

– Thurs 3pm-5pm

– Also great for grad project!

6



Other Logistics

• May not leave first hour and last ~10 min

• No cellphones, calculators, other aids

• Bring your T-Card

• You may write in pen or pencil, but we will 
only accept remark requests if written in pen
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Sample midterms

• Winter 2017:

– http://courses.skule.ca/course/CSC411H1

• Fall 2017 practice midterm:

– http://www.cs.toronto.edu/~jlucas/teaching/csc4
11/resources/example_midterm.pdf

– http://www.cs.toronto.edu/~jlucas/teaching/csc4
11/resources/example_solutions.pdf

– Skip 1a, 1c, 3a, 3b. 4 is doable but quite difficult, 
especially without matrix calculus. 
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Formulas

• No cheat sheets
• Any formula that we did not derive or explain 

completely will be provided to you. For example, if you 
need the following, they will be provided:
– Multivariate Gaussian density
– tanh activation

• Formulas which we did derive may not be provided, 
depending on the problem
– We derived the log-loss

• Formulas that we explained completely will not be 
provided
– ReLU, sigmoid, mean square loss
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Study advice

• Our goal is for you to understand everything in 
the lectures, tutorials, and projects, and be 
able to apply it

– Study guide questions are intended to help you go 
through the process of making sure that you 
understood everything

– Make up your own study guide questions

• Go to study guide sessions/contribute to the 
Google Doc
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Orange vs Lemon?
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What classifiers can we 
use to classify orange vs 
lemon?

• kNN
• Logistic Regression
• Neural Network



Decision Tree
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• How to use one
• How to learn one
• Information theory

Let’s start with a pre-
learned tree.



Decision Trees
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Decision Trees
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Decision Trees
• Internal nodes

test the value of particular features 𝑥𝑗
branch according to the results of the test

• Leaf nodes specify the class ℎ 𝑥

• Simpler Example: Predicting whether we’ll play tennis (outputs: Yes, No)
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• Features: Outlook (𝒙𝟏), Temperature (𝒙𝟐), Humidity (𝒙𝟑), and Wind (𝒙𝟒). 
– 𝒙 = (𝐒𝐮𝐧𝐧𝐲,𝐇𝐨𝐭, 𝐇𝐢𝐠𝐡, 𝐒𝐭𝐫𝐨𝐧𝐠) will be classified as No

– The Temperature feature is irrelevant



Decision Trees

• As close as it gets to an “off-the-shelf” 
classifier

• Random forests – averages of multiply 
decision trees classifiers – often perform the 
best on Kaggle

– Though carefully-engineered neural networks and 
other methods win as well
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Decision Trees: Continuous Features

• If the features are continuous, internal nodes may test the value of a feature 
against a threshold
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Decision Trees: Decision Boundaries

• Decision trees divide the feature space into axis-parallel rectangle

• Each rectangle is labelled with one of the K classes
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Decision Trees: Model Capacity

• Any Boolean function can be represented

• Might need exponentially many nodes
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Decision Trees: Model Capacity

• As the number of nodes in the tree/the depth 
of the tree increases, the hypothesis space 
grows

– Depth 1 (“decision stump”): can represent any 
Boolean function of one feature

– Depth 2: Any Boolean function of two features + 
some Boolean functions of three features
(e.g. 𝑥1 ∧ 𝑥2 ∨ (¬𝑥1 ∧ ¬𝑥3))

– Etc.
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Learning Parity

• Suppose we want to learn to distinguish 
strings of parity 0 and strings of parity 1

• All splits will look equally good!

• Need 2𝑛 examples to learn the function 
correctly

• If there are extra random features, cannot do 
anything
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Learning Decision Trees

• Learning the simplest (smallest) decision tree is an NP-
complete problem 
– See Hyafil and Rivest, “Constructing Optimal Binary Decision Trees is 

NP-complete,” Information Processing Letters Vol 5(1), 1976

• A greedy heuristic
– Start from an empty decision tree

– Select the best attribute/feature to split on

– Recurse
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But what does “best” mean?
We’ll come back to this.



Learning Decision Trees (Binary Features)

GrowTree(S)

if (y=0 for all < 𝑥, 𝑦 >∈ 𝑆) 

return new leaf(0)

else if (y=1 for all < 𝑥, 𝑦 >∈ 𝑆) 

return new leaf(1)

else

choose the best attribute 𝑥𝑗

𝑆0 = < 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 0

𝑆1 = {< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 1}

return new node(𝑥𝑗, GrowTree(𝑆0), GrowTree(𝑆1))
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Threshold splits

• For continuous features, need to decide on a 
threshold 𝑡

– Branches: 𝑥𝑗 < 𝑡, 𝑥𝑗 ≥ 𝑡

• Want to allow repeated splits along a path

– Why?
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Set of all possible thresholds

• Branches: 𝑥𝑗 < 𝑡, 𝑥𝑗 ≥ 𝑡

• Can’t try all real 𝑡

• But only a finite number of 𝑡’s are important

• Sort the values of 𝑥𝑗 into 𝑧1, … , 𝑧𝑚, consider split 

points of the form 𝑧𝑖 + (𝑧𝑖+1 − 𝑧𝑖)/2

• Only splits between different examples of different 
classes matter
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Choosing the Best Attribute

• Most straightforward idea: do a 1-step lookahead, and choose 
the attribute such that if we split on it, we get the lowest error 
rate on the training data
– Do a majority vote if not all y’s agree at a leaf

ChooseBestAttribute(S)

Choose 𝑗 s.t. 𝐽𝑗 is minimized

𝑆𝑜 =< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 0

𝑆1 =< 𝑥, 𝑦 >∈ 𝑆 𝑠. 𝑡. 𝑥𝑗 = 1

y0: the most common value of y in S0
y1: the most common value of y in S1

𝐽0=#{< 𝑥. 𝑦 >∈ 𝑆0, 𝑦 ≠ 𝑦0}, 𝐽1=#{< 𝑥. 𝑦 >∈ 𝑆1, 𝑦 ≠ 𝑦1}

𝐽𝑗 = 𝐽0 + 𝐽1 #total number of errors if we split on 𝑥𝑗
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Choosing the Best Attribute (example)
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Splitting on 𝑥1 produces just two errors

Four 0’s, 
four 1’s

One 0, three 1’s



Choosing the Best Attribute

• The number of errors won’t always tell us that 
we’re making progress

29

Same number of 
errors as before 
the split



Choosing the Best Attribute

• The number of errors won’t always tell us that 
we’re making progress

30

Same number of 
errors as before 
the split



Entropy

• The entropy of 𝑉, 𝐻(𝑉) is defined as

𝐻 𝑉 =෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

• It is a measure of “randomness”

• What does entropy mean? 

• Let’s explain entropy in three different ways

31



Example: flipping two different coins

32



If we flip two different coins
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𝐻 𝑉 = ෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

Higher Entropy; more uncertainty



Entropy as “Average Surprise”

• Suppose 𝑉 is a random variable with the probability distribution

• The surprise 𝑆(𝑉 = 𝑣) for each value of 𝑣 is defined as
𝑆 𝑉 = 𝑣 = − log2 𝑃(𝑉 = 𝑣)

– The smaller the probability of the event, the larger the surprise if we observe 
the event

– 0 surprise for events with probability 1

– Infinite surprise for events with probability 0

34

𝑷(𝒗 = 𝟎) 𝑷(𝒗 = 𝟏) 𝑷(𝒗 = 𝟐) 𝑷(𝒗 = 𝟑) 𝑷(𝒗 = 𝟒) 𝑷(𝒗 = 𝟓) 𝑷(𝒗 = 𝟔)

0.1 0.002 0.52 … … … …



Surprise

• Suppose we want to communicate the value 
of 𝑣 to a receiver. It makes sense to use longer 
binary codes for rarer values of 𝑉

– Can use − log2 𝑃(𝑉 = 𝑣) bits to communicate 𝑣

• Check that this makes sense if 𝑃 𝑉 = 0 = 1 (no need 
to transmit any information) and 𝑃 𝑉 = 0 =

𝑃 𝑉 = 1 =
1

2
(need one bit)

• Fractional bits only make sense for longer messages

• Example: UTF-8

• “Amount of information”

• We won’t go into this in further detail 35



Entropy

• The entropy of 𝑉, 𝐻(𝑉) is defined as

𝐻 𝑉 =෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

• The average surprise for one “trial” of 𝑉

– The average message length when communicating 
the trial

• The average amount of information we get by 
seeing one value of 𝑉 (in bits)
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Entropy

• High entropy means we cannot predict what 
the value of 𝑉 might be

• Low entropy means we are pretty sure we 
know what the value of 𝑉 is

37

The entropy of a 
Bernoulli variable 
is maximized when 
𝑝 = 0.5



Three views of Entropy

We are considering a random variable 𝑉, and a 
sample 𝑣 from it

The Entropy is

1. Average Surprise at 𝑣

2. Average message length when transmitting 𝑣
in an efficient way

3. Measure of the ”spread-out”-ness of the 
distribution 𝑉

Entropy is a measure of uncertainty.
38



Conditional Entropy

• The amount of information needed to 
communicate the outcome of 𝐵 given that we 
know 𝐴

𝐻 𝐵 𝐴 = ෍

𝑎

𝑃 𝐴 = 𝑎 𝐻(𝐵|𝐴 = 𝑎)

= ෍

𝑎

𝑃 𝐴 = 𝑎 [−෍

𝑏

𝑃 𝐵 = 𝑏 𝐴 = 𝑎 log2 𝑃(𝐵 = 𝑏|𝐴 = 𝑎)]

39

𝐻(𝐵) if 𝐴 and 𝐵 are 
indep. 0 if 𝐴 = 𝐵 always.



Mutual Information

• The amount of information we learn about 
the value of 𝐵 by knowing the value of 𝐴
𝐼 𝐴; 𝐵 = 𝐻 𝐵 − 𝐻 𝐵 𝐴 = 𝐻 𝐴 − 𝐻(𝐴|𝐵)

40

# of extra bits needed to 
communicate the value 
of 𝐵 if we know 𝐴

# of bits needed to 
communicate the 
value of B

- =
# of bits of 
information we 
know about 𝐵 if 
we know 𝐴

Also called “Information Gain”



Mutual Information

• Suppose the class 𝑌 of each training example 
and the value of feature 𝑥1 are random 
variables. The mutual information quantifies 
how much 𝑥1tells us about the value of 𝑌

41

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑌 −෍

𝑥

𝑃 𝑋 = 𝑥 𝐻(𝑌|𝑋 = 𝑥)

Lower is 
better for 
higher 
I(Y;X)



Mutual Information

• What is the mutual information of this split?
(Exercise)
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Mutual Information Heuristic

• Pick the attribute 𝑥𝑗 such that 𝐼(𝑥𝑗; 𝑌) is as 

high as possible
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Mutual Information Heuristic

• If we had a correct rate of 0.7, and split the data into two groups where 
the correct rates were 0.6 and 0.8, we will not make progress on the 
number of errors, but we will make progress on the average 𝐻(𝑌|𝑋)

• We could use any concave function of 𝑝 instead of computing the 
conditional entropy in

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑌 − σ𝑥 𝑃 𝑋 = 𝑥 𝐻(𝑌|𝑋 = 𝑥)

44

P(Y=1|X=x) P(Y=1|X=x)

H(Y|X=x)
Error 
rate



Learning Decisions Trees: Summary
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Learning Decisions Trees: Summary
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Learning Decisions Trees: Summary
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Learning Decisions Trees: Summary
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Aside: Cross Entropy

• The cost function we used when training 
classifiers was called the Cross Entropy

𝐻 𝑃, 𝑄 = −σ𝑣 𝑃 𝑉 = 𝑣 log𝑄 𝑉 = 𝑣

• The amount of information we need to transmit if we 
are using a coding scheme optimized for distribution 
Q, when the actual distribution over V is P

49

Transmit this 
many bitsWith this 

probability



Aside: Cross Entropy

• 𝐻 𝑃,𝑄 = −σ𝑦𝑃 𝑋 = 𝑦 log𝑄 𝑋 = 𝑦

• When used as a cost function:

– P: the observed distribution (we know the answer)

– Q: what the classifier actually outputs

– Smaller 𝐻(𝑃, 𝑄) means the distributions P and Q are more similar

• Different conditional distribution for every value of 𝑥(𝑖)!
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Y = 0 Y=1 Y=2 Y=3

𝑃 𝑌 0 = 0 𝑥 0 = 0 𝑃 𝑌 0 = 1 𝑥 0 = 1 𝑃 𝑌 0 = 2 𝑥 0 = 0 𝑃 𝑌 0 = 3 𝑥 0 = 0

Change of notation: the 
random variable is y

Y = 0 Y=1 Y=2 Y=3

𝑃 𝑌 0 = 0 𝑥 0 = 0.1 𝑃 𝑌 0 = 1 𝑥 0 = .7 𝑃 𝑌 0 = 2 𝑥 0 = .15 𝑃 𝑌 0 = 3 𝑥 0 = .15



Missing Attribute Values

• Can use examples with missing attribute 
values

– If node 𝑛 tests missing attribute 𝐴, assign the 
most common value of attribute  𝐴 among the 
other examples in node 𝑛

– Assign the most common value of 𝐴 among 
examples with the same target value

– Assign probability 𝑝𝑖 to each possible value 𝑣𝑖 of 
𝐴. Assign fraction 𝑝𝑖 of example to each 
descendent in the tree
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Avoiding Overfitting

• Stop growing the tree early

• Or grow full tree, then prune

• The “best” tree:

– Measure performance on the validation set

– Measure performance on the training data, but 
add a penalty term that grows with the size of the 
tree
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Reduced-Error Pruning

• Repeat

– Evaluate the impact on the validation set of 
pruning each possible node (and all those below 
it)

– Greedily remove the node such that removing the 
node improves validation set accuracy the most
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Effect of Reduced-Error Pruning
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Converting a Tree to Rules
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Rule Post-Pruning

• Convert the tree into an equivalent set of 
rules

– “If sunny and warm, there will be a tennis match”

– “If rainy, there will not be a tennis match”

– …

• Prune each rule independently of the others

– Is removing the rule improving validation 
performance

• Sort the rules into a good sequence for use
56



Scaling Up

• Decision trees algorithms like ID3 and C4.5 
assume random access to memory is fast

– Good for up to hundreds of thousands of 
examples

• SPRINT, SLIQ: multiple sequential scans of data 

– OK for millions of examples

• VDFT: at most one sequential scan

– “stream mode”
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