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Announcements

Graduate Project Proposals were reviewed
Project 3 due March 19t

Midterm Review Tutorial:

— Wednesday 10am-12pm (SS2105)
— Friday 4pm-6pm (BA2185)
Remark Request to Tracy / Alex in BA4208
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Dimensionality Reduction
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Dimensionality Reduction

e \Want to represent data in a new
coordinate system with fewer P
dimensions X

e Cannot easily visualize n-D data, "
but can plot 2D or 3D data

e Want to extract features from
the data

e Similar to extracting xy (cm)
features with a ConvNet — KA HNHHHK—>
easier to classify extracted Z)

features than original data Original data

o Wa.nt to compress the data (1, 1.2) 115
while preserving most of the
. . (2,2) 2
information
(3, 3.3) 3.1
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Dimensionality Reduction

e Goal: preserve as much

information as we can about X
the data in the new coordinate 7 Xx
system ﬁ_» Ve
e Preserve distance between | & o
data points " &
e Preserve variation between - .
. ry (em)
data points
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Principal Component Analysis

e Linear dimensionality reduction

e The transformed data is a linear transformation of the original
data

e Find a subspace hyperplane that the data lies in and
project the data onto that subspaee hyperplane

e Usually we center the data first

original data space

PCA component space
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Principal Component Analysis

e |f all the data lies in a subspace, we can represent
the data using the coordinates in that subspace

GA

e Here: a 1D subspace arguably suffices

e Just keep information about where in the orange cloud
the point is — one dimension suffices



Principal Component Analysis

Key Idea

1. Rotate the data with some rotation matrix
R (change of basis) so that the new
features are uncorrelated

2. Keep the dimension u
with the highest w
variance (assumed to N

be most information) | 5




Principal Component Analysis

In the picture:

1. R:ixq, Xy =2 Uq, Uy
— This is a change of basis
— ...which is a rotation

2. Can just keep u4 and y
drop u, and keep most moxx
information about the Pl
data o




Dataset of faces as an example

e When viewed as vectors of pixel values, face images are
extremely high-dimensional
— 100x100 image => 10,000 dimensions

e But very few 10,000-dimensional vectors are valid face
images

e We want to effectively model the subspace of face images
e Need a lot fewer dimensions than 10,000 dimensions for that
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The space of faces

 Each images is a point in space
* Valid faces should lie in a low-dim subspace



Rotating a Cloud to Be Axis-Alighed

* Consider the covariance matrix of all the pointsin a

cloud

e 2=, (x® - pu)(x® = )’
* The Spectral Theorem says

we can diagonalize X (not covered in detall)
Ay e 07
RTSR=D=|: =~ 1],
0 - A4l
R’s columns are the Eigenvectors of X

No need to divide the sum by n when computing the covariance
in this context



* Now:

) RGO —W)REO -0)) =
RO (x0 = ) (x = ) RT

l
= RXRT" =D
* So if we rotate the (x(i) — /,t) using R, the

covariance matrix of the transformed data will
be diagonal



Intuition

 |f the covariance of the data is diagonal, the
data lies in an axis-aligned cloud

* R, the matrix of the eigenvector of 2, is the
rotation matrix that needs to be applied to the

data (x(i) — ,u) to make the cloud of
datapoints axis aligned

— Because we proved the covariance of the result
will be diagonal



Change of Basis

e (On the board)
* Main points
— Review of change of basis

— A rotation around O can be interpreted as a
change of basis

— If the data is centred at O, rotating it means
changing its basis

— We can make data be centred at 0 by subtracting
the mean from it



Reconstruction

* For a subspace with the orthonormal basis
Vi = {vy, V1, Vg, ... U}, the best (i.e., closest)
reconstruction of x in that subspace is:

Xp = (x-v9)vg + (x - vV + -+ (X - vy ) Vg
— If x is in the span of V}, this is an exact
reconstruction

— If not, this is the projection N

of xon V /
* Squared reconstruction D
error: | (&, — x)|?




Reconstruction cont’d

o X =x-v)vyg+ (x-v))V1 + -+ (x - vp)Vy

* Note:in (x : vy)vy,
— (x - vy) is a measure of how similar x is to v,

— The more similar x is to v, the larger the
contribution from v is to the sum



Representation and reconstruction

* Face x in “face space” coordinates:

@ X — [uj(x — ), ..., ul(x — )]

« Reconstruction:

|
S
E
=

= u + WU FWoU WU WUt
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Reconstruction

k=400

After computing eigenfaces using 400 face
images from ORL face database 20

slide by Derek Hoiem



Principal Component Analysis (PCA)

* Suppose the columns of a matrix Xk are the datapoints (N
is the size of each image, K is the size of the dataset), and we
would like to obtain an orthonormal basis of size k that
produces the smallest sum of squared reconstruction errors
for all the columns of X — X

— X is the average column of X

* Answer: the basis we are looking for is the k
eigenvectors of (X — X)(X — X)! that
correspond to the k largest eigenvalues



PCA — cont'd

* If x is the datapoint (obtained after subtracting
the mean), and V an orthonormal basis, V' x is a
column of the dot products of x and the elements
of x

* So the reconstruction for the centered x is
x=V{VTx))

* PCAis the procedure of obtaining the k
eigenvectors V/j,



NOTE: centering

* If the image x is not centred (i.e., X was not
subtracted from all the images), the

reconstruction is:
E=X+VWVikx-X))



Proof that PCA produces the best reconstruction



Proof that PCA produces the best reconstruction

DEAR MATH,

I'M NOT A THERAPIST.
SOLVE YOUR OWN PROBLEMS.




Reminder: Intuition for PCA

u

Uy X X

X
X
X

X

The subspace where the reconstruction that will be the best is the major
axis of the cloud

We’ve shown that we are making the cloud axis-aligned by rotating it

— So we know one of the basis elements will correspond to the best one-dimensional
subspace

The major axis is the Eigenvector which corresponds to the largest
Eigenvalue

— We haven’t shown that (but we could)



Obtaining the Principal Components

e XX can be huge
* There are tricks to still compute the
eigenvalues

— Look up Singular Value Decomposition (SVD) if
you’re interested



EigenFace as dimensionality reduction

>

The set of faces is a “subspace” of the set of images
« Suppose it is K dimensional
« We can find the best subspace using PCA

« This is like fitting a “hyper-plane” to the set of (centred) faces
— spanned by vectors vy, Vo, ..., Vg 28

—anyface x ~ X+ a1vy +aove + ...+ apvi



Eigenfaces example

Top eigenvectors: uy,...u,

slide by Derek Hoiem



Another Eigenface set

With a smaller training set

30



PCA: Applications

A

GG convert x into v,, v, coordinates

Z is the mean o X —= ((X—.CL‘) °V1,(X—£E) 'V2)

g‘;itnhti orange Vo g0 What does the v, coordinate measure?
1O Vq - Distance to line

R g - Use it for classification—near 0 for orange pts

o T - Possibly a good feature!

o yag ure!

o What does the v, coordinate measure?

- Position along line

- Use it to specify which orange point it is
- Use v, if want to compress data

vl
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Two views of PCA

e \Want to minimize the squared distance between the
original data and the reconstructed data, for a given
dimensionality of the subspace k

e Minimize the red-green distance per data point
e Our approach so far

e Maximize the variance of the projected data, for a
given dimensionality of the subspace k

e Maximize the “scatter” (i.e., variance) of the green points

e |n general, maximize sum of ~ ' e
components o) /

N
/n
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P

v
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Two views of PCA

RTSR =D =

0 - Ay
D is the covariance matrix of the transformed data
« The variance of the projected data along the j-th

, 2
component (coordinate) is 4; = %Zi (xj ®_ 9?]-)

* For a given k, when maximizing the variance of the
projected data, we are trying to maximize
« M+ + e+ A

« We can show (but won’t) that the variance
maximization formulation and minimum square
reconstruction error formulation produce the same k-

dimensional bases
33



How to choose k?

e |f need to visualize the dataset
e Use k=2 or k=3
e If want to use PCA for feature extraction

e Transform the data to be k-dimensional
e Use cross-validation to select the best k

34



How to choose k?

* Pick based on percentage of variance captured / lost
e Variance captured: the variance of the projected data
e Pick smallest k that explains some % of variance
e M+ ++4)/ A+ + 4+ A+ -+
e Look for an “elbow” in Scree plot (plot of explained
variance or eigenvalues)
e |n practice the plot is never very clean

Scree plot

Percentage of variances
N w S
o o o
1 }
Explained Variance

-
o
1

1 1 1 1 1 1 1 1 1 1 PCA Component
1 2 3 4 5 6 7 8 9 10 35
Dimensions



Limitations of PCA

e Assumption: variance == information
e Assumption: the data lies in a linear subspace only

Height I
of Stack »
PC
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Autoencoders

.
B SR [ oo
’E.HE 500 neurons
w (6) *
n!sqs 250 neurons

Reconstruction

-H « .E w® Sq. Difference
30 code

= i | = g e W(S) ||
EHQE \""-, o 250 neurons
P La&ina v T
T o e
-.H M | T nput

Find the weights that produce as small a difference as possible between the
input and the reconstruction

e Train using Backprop

* The code layer is a low-dimensional summary of the input
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Autoencoders

e The Encoder can be used

e To compress data
e As a feature extractor

 |f you have lots of unlabeled data and some labeled data, train
an autoencoder on unlabeled data, then a classifier on the
features (semi-supervised learning)

e The Decoder can be used to generate images given

a new code
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Autoencoders and PCA

PCA can be viewed as a special case of an autoencoder
We can “tie” the encoder and decoder weights to make sure
the architecture works the same way PCA does

* This is sometimes useful for regularization

reconstruction

Weights: WT

Linear activation

Weights: W

Input

* Input: x
 Hidden layer: WTx
« Reconstruction: WIWT x

* Minimize }}; |WWTx — x|? -- the square reconstruction error, as in PCA

» Just one set of weight parameters, transposed
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