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Dimensionality Reduction

e Want to represent data in a new :
coordinate system with fewer %
dimensions x><

e (Cannot easily visualize n-D data, but .
can plot 2D or 3D data

e \Want to extract features from the
data

e Similar to extracting features with a b 4
ConvNet — easier to classify extracted - >
features than original data ) (cm)

e Want to compress the data while KNI
preserving most of the information )

e Goal: preserve as much information -
as we can about the data in the new

T2 (inches)
p ¢

coordinate system (1, 1.2) 1.15
e Preserve distance between data (2, 2) 2
points (3, 3.3) 3.1

e Preserve variation between
datapoints 2
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Principal Component Analysis

e Linear dimensionality reduction

e The transformed data is a linear transformation of the original
data

e Find a subspace that the data lies in and project the data
onto that subspace

original data space

component space
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Principal Component Analysis

e |nthe 2D example: want to transform the data so that it
varies mostly along u4

e (Can just take the u; coordinate and keep most of the information
about the data

e Keep the diagram in mind for the rest of the lecture

e We will use a dataset of faces as an example
e Same idea, but higher-dimensional
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Principal Component Analysis

e |f all the data lies in a subspace, we can represent
the data using the coordinates in that subspace

GA

e Here: a 1D subspace arguably suffices

e Just keep information about where in the orange cloud
the point is — one dimension suffices



The space of all face images

e When viewed as vectors of pixel values, face images are
extremely high-dimensional
— 100x100 image => 10,000 dimensions
e But very few 10,000-dimensional vectors are valid face
images
e We want to effectively model the subspace of face images

e Need a lot fewer dimensions than 10,000 dimensions for that




The space of faces

* Each images is a point in space



Rotating a Cloud to Be Axis-Alighed

* Consider the covariance matrix of all the points in a
cloud

. . T
* The Spectral Theorem says I
we can dlagonallze 2. (not covered in detall)

/11 e 0 Spectral theorem:
T . N . . PP =D
RI2R=D=|: ) . SetP =R,P~' =R"

0 - Ay
R’s columns are the Eigenvectors of X

No need to divide the sum by n when computing the covariance
in this context



* Now:

Z RT(x® — o) (RT(x® - M))T _
RT(Z(JC(” - 1)(x® — ) IR

l
=RIYR =D
» So if we rotate the (x(Y) — ) using R7, the

covariance matrix of the transformed data will
be diagonal



Intuition

* |f the covariance of the data is diagonal, the
data lies in an axis-aligned cloud

* R, the matrix of the eigenvector of %, is the
rotation matrix that needs to be applied to the
data (x(i) — ,u) to make the cloud of
datapoints axis aligned

— Because we proved the covariance of the result
will be diagonal



Change of Basis

e (On the board)
* Main points
— Review of change of basis

— A rotation around O can be interpreted as a
change of basis

— If the data is centred at O, rotating it means
changing its basis

— We can make data be centred at O by subtracting
the mean from it



Reconstruction

* For a subspace with the orthonormal basis
Vi = {vy, V1, V9, ... U}, the best (i.e., closest)

reconstruction of x in that subspace is:
X = (x-v9)vg + (x - vV + -+ (x - V3 ) Vg

— If x is in the span of V}, this is an exact
reconstruction

— If not, this is the projection of x on V

 Squared reconstruction error: |(X; — X)lz



Reconstruction cont’d

o X, =(x-vyvyg+ (x-v)vy + -+ (x - V)V

* Note:in (x : vy)vy,
— (x - vy) is a measure of how similar x is to v,

— The more similar x is to vy, the larger the
contribution from v is to the sum



Representation and reconstruction

* Face X in “face space” coordinates:

= L+ WU WU, WU WU, T .
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Reconstruction

k =200

k =400

face
Images from ORL face database 15
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After computing eigenfaces using



Principal Component Analysis (PCA)

* Suppose the columns of a matrix Xy« are the datapoints (N
is the size of each image, K is the size of the dataset), and we
would like to obtain an orthonormal basis of size k that
produces the smallest sum of squared reconstruction errors
for all the columns of X — X

— X is the average column of X

* Answer: the basis we are looking for is the k
eigenvectors of (X — X)(X — X)T that
correspond to the k largest eigenvalues



PCA — cont’d

* If xis the datapoint (obtained after subtracting
the mean), and V an orthonormal basis, V1 x is a
column of the dot products of x and the elements

of x

* So the reconstruction for the centered x is
£ =V{VTx))

* PCA is the procedure of obtaining the k
eigenvectors V/},



NOTE: centering

e If the image x is not centred (i.e., X was not
subtracted from all the images), the

reconstruction is:
E=X+VUVIix—-X))



Proof that PCA produces the best reconstruction



DEAR MATH.

I'M NOT A THERAPIST.
SOLVE YOUR OWN PROBLEMS.




Reminder: Intuition for PCA

/1 ul

Xy

Xy

The subspace where the reconstruction that will be the best is the major
axis of the cloud

We’ve shown that we are making the cloud axis-aligned by rotating it

— So we know one of the basis elements will correspond to the best one-dimensional
subspace

The major axis is the Eigenvector which corresponds to the largest
Eigenvalue

— We haven’t shown that (but we could)



Obtaining the Principal Components

e XXT can be huge

* There are tricks to still compute the Evs

— Look up Singular Value Decomposition (SVD) if
you’re interested



EigenFace as dimensionality reduction

>

The set of faces is a “subspace” of the set of images
« Suppose it is K dimensional
« We can find the best subspace using PCA
» This is like fitting a “hyper-plane” to the set of (centred) faces
— spanned by vectors vq, Vo, ..., Vg 23
—anyface x X+ a1vy + aove + ...+ apvy



Eigenfaces example

Top eigenvectors: uy,...uU,
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Another Eigenface set

25



PCA: Applications

A

& convert x into v,, v, coordinates

Z is the mean o X = ((Xx—=7) vy, (X —7T) - v3)
ﬁgitnhti orange I What does the v, coordinate measure?

T QL V1 - Distance to line
WO P - Use it for classification—near O for orange pts
o - Possibly a good feature!

o What does the v, coordinate measure?

- Position along line

- Use it to specify which orange point it is
- Use v, if want to compress data

avl
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Two views of PCA

e Want to minimize the squared distance between the
original data and the reconstructed data, for a given
dimensionality of the subspace k

e Minimize the red-green distance per data point

e Our approach so far

e Maximize the variance of the projected data, for a
given dimensionality of the subspace k

e Maximize the “scatter” (i.e., variance) of the green points

e |n general, maximize sum of
components 5
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Two views of PCA

A, - 0
« RTSR=D=|: '

_ 0 - /1d_
* D is the covariance matrix of the transformed data
« The variance of the projected data along the j-th

. . @ 2
component (coordinate) is A; = %Zi (xj - fj)

* For a given k, when maximizing the variance of the
projected data, we are trying to maximize
c M+t 4 A

* We can show (but won'’t) that the variance
maximization formulation and minimum sqguare
reconstruction error formulation produce the same k-

dimensional bases 28



How to choose k?

e |f need to visualize the dataset
e Use k=2 or k=3
e |f want to use PCA for feature extraction

e Transform the data to be k-dimensional
e Use cross-validation to select the best k

29



How to choose k?

e Pick based on percentage of variance captured / lost
e Variance captured: the variance of the projected data
e Pick smallest k that explains some % of variance
e M+ ++4)/ A+ + 4+ A+ -+ Ay
e Look for an “elbow” in Scree plot (plot of explained
variance or eigenvalues)
e |n practice the plot is never very clean

Scree plot

Percentage of variances
N w S
o o o
1
Explained Variance

-
o
1

1 1 1 1 1 1 1 1 1 1 PCA Component
1 2 3 4 5 6 7 8 9 10 . 30
Dimensions



Limitations of PCA

e Assumption: variance == information
e Assumption: the data lies in a linear subspace only
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Autoencoders

|
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input
Find the weights that produce as small a difference as possible between the
input and the reconstruction
e Train using Backprop
* The code layer is a low-dimensional summary of the input
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Autoencoders

e The Encoder can be used
e To compress data

e As a feature extractor

 If you have lots of unlabeled data and some labeled data, train
an autoencoder on unlabeled data, then a classifier on the
features (semi-supervised learning)

e The Decoder can be used to generate images given
a new code
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Autoencoders and PCA

PCA can be viewed as a special case of an autoencoder
We can “tie” the encoder and decoder weights to make sure
the architecture works the same way PCA does

* This is sometimes useful for regularization

reconstruction

Weights: WT

Linear activation

Weights: W

Input

* I|nput: x
 Hidden layer: WTx
e Reconstruction: WIWTx

*  Minimize }}; |WWTx — x|? -- the square reconstruction error, as in PCA

e Just one set of weight parameters, transposed
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