
Principal Component Analysis (PCA) 

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Salvador Dalí, “Galatea of the Spheres”

Some slides from Derek Hoiem and Alysha Efros 1



Dimensionality Reduction
• Want to represent data in a new 

coordinate system with fewer 
dimensions

• Cannot easily visualize n-D data, but 
can plot 2D or 3D data

• Want to extract features from the 
data

• Similar to extracting features with a 
ConvNet – easier to classify extracted 
features than original data

• Want to compress the data while 
preserving most of the information

• Goal: preserve as much information 
as we can about the data in the new 
coordinate system

• Preserve distance between data 
points

• Preserve variation between 
datapoints

Original data Transformed

(1, 1.2) 1.15

(2, 2) 2

(3, 3.3) 3.1

… …
2



Principal Component Analysis
• Linear dimensionality reduction

• The transformed data is a linear transformation of the original 
data

• Find a subspace that the data lies in and project the data 
onto that subspace

3



Principal Component Analysis
• In the 2D example: want to transform the data so that it 

varies mostly along 𝑢1
• Can just take the 𝑢1 coordinate and keep most of the information 

about the data

• Keep the diagram in mind for the rest of the lecture

• We will use a dataset of faces as an example

• Same idea, but higher-dimensional
data

4



Principal Component Analysis

• If all the data lies in a subspace, we can represent 
the data using the coordinates in that subspace

• Here: a 1D subspace arguably suffices

• Just keep information about where in the orange cloud 
the point is – one dimension suffices 5



The space of all face images
• When viewed as vectors of pixel values, face images are 

extremely high-dimensional
– 100x100 image => 10,000 dimensions

• But very few 10,000-dimensional vectors are valid face 
images

• We want to effectively model the subspace of face images
• Need a lot fewer dimensions than 10,000 dimensions for that

6



The space of faces

• Each images is a point in space

+=

7



Rotating a Cloud to Be Axis-Aligned

• Consider the covariance matrix of all the points in a 
cloud

• Σ = σ𝑖 𝑥
𝑖 − 𝜇 𝑥 𝑖 − 𝜇

𝑇

• The Spectral Theorem says
we can diagonalize Σ (not covered in detail):

𝑅𝑇Σ𝑅 = 𝐷 =
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑑

, 

R’s columns are the Eigenvectors of Σ

No need to divide the sum by n when computing the covariance 
in this context

8

Spectral theorem:
𝑃−1Σ𝑃 = 𝐷

Set 𝑃 = 𝑅, 𝑃−1 = 𝑅𝑇



• Now:

෍

𝑖

𝑅𝑇 𝑥 𝑖 − 𝜇 𝑅𝑇 𝑥 𝑖 − 𝜇
𝑇

=

𝑅𝑇(෍

𝑖

𝑥 𝑖 − 𝜇 𝑥 𝑖 − 𝜇
𝑇
)𝑅

= 𝑅𝑇Σ𝑅 = 𝐷

• So if we rotate the 𝑥 𝑖 − 𝜇 using 𝑅𝑇, the 

covariance matrix of the transformed data will 
be diagonal! 9



Intuition

• If the covariance of the data is diagonal, the 
data lies in an axis-aligned cloud

• R, the matrix of the eigenvector of Σ, is the 
rotation matrix that needs to be applied to the 

data 𝑥 𝑖 − 𝜇 to make the cloud of 

datapoints axis aligned

– Because we proved the covariance of the result 
will be diagonal

10



Change of Basis

• (On the board)

• Main points

– Review of change of basis

– A rotation around 0 can be interpreted as a 
change of basis

– If the data is centred at 0, rotating it means 
changing its basis

– We can make data be centred at 0 by subtracting 
the mean from it

11



Reconstruction

• For a subspace with the orthonormal basis 
Vk = 𝑣0, 𝑣1, 𝑣2, … 𝑣𝑘 , the best (i.e., closest) 
reconstruction of x in that subspace is:

ො𝑥𝑘 = 𝑥 ⋅ 𝑣0 𝑣0 + 𝑥 ⋅ 𝑣1 𝑣1 +⋯+ 𝑥 ⋅ 𝑣𝑘 𝑣𝑘

– If x is in the span of 𝑉𝑘, this is an exact 
reconstruction

– If not, this is the projection of x on V

• Squared reconstruction error: | ො𝑥𝑘 − 𝑥 |2

12



Reconstruction cont’d

• ො𝑥𝑘 = 𝑥 ⋅ 𝑣0 𝑣0 + 𝑥 ⋅ 𝑣1 𝑣1 +⋯+ 𝑥 ⋅ 𝑣𝑘 𝑣𝑘

• Note: in 𝑥 ⋅ 𝑣0 𝑣0, 

– 𝑥 ⋅ 𝑣0 is a measure of how similar x is to 𝑣0
– The more similar x is to 𝑣0, the larger the 

contribution from 𝑣0 is to the sum

13



Representation and reconstruction

• Face x in “face space” coordinates:

• Reconstruction:

= +

µ       +    w1u1+w2u2+w3u3+w4u4+ …

=

^
x =

slide by Derek Hoiem

14



k = 4

k = 200

k = 400

Reconstruction

After computing eigenfaces using 400 face 

images from ORL face database
slide by Derek Hoiem

15



Principal Component Analysis (PCA)

• Suppose the columns of a matrix 𝑋𝑁×𝐾 are the datapoints (N 
is the size of each image, K is the size of the dataset), and we 
would like to obtain an orthonormal basis of size k that 
produces the smallest sum of squared reconstruction errors 
for all the columns of 𝑋 − ത𝑋

– ത𝑋 is the average column of X

• Answer: the basis we are looking for is the k
eigenvectors of 𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇 that 
correspond to the k largest eigenvalues

16



PCA – cont’d

• If x is the datapoint (obtained after subtracting 
the mean), and V an orthonormal basis, 𝑉𝑇𝑥 is a 
column of the dot products of x and the elements 
of x

• So the reconstruction for the centered x is 
ො𝑥 = 𝑉(𝑉𝑇𝑥))

• PCA is the procedure of obtaining the k 
eigenvectors 𝑉𝑘

17



NOTE: centering

• If the image x is not centred (i.e., ത𝑋 was not 
subtracted from all the images), the 
reconstruction is:

ො𝑥 = ത𝑋 + 𝑉(𝑉𝑇(𝑥 − ത𝑋))

18



Proof that PCA produces the best reconstruction

19



20



Reminder: Intuition for PCA

• The subspace where the reconstruction that will be the best is the major 
axis of the cloud

• We’ve shown that we are making the cloud axis-aligned by rotating it
– So we know one of the basis elements will correspond to the best one-dimensional 

subspace

• The major axis is the Eigenvector which corresponds to the largest 
Eigenvalue

– We haven’t shown that (but we could)

21



Obtaining the Principal Components

• 𝑋𝑋𝑇 can be huge

• There are tricks to still compute the Evs

– Look up Singular Value Decomposition (SVD) if 
you’re interested

22



EigenFace as dimensionality reduction

The set of faces is a “subspace” of the set of images

• Suppose it is K dimensional

• We can find the best subspace using PCA

• This is like fitting a “hyper-plane” to the set of (centred) faces

– spanned by vectors v1, v2, ..., vK

– any face 
23



Eigenfaces example

Top eigenvectors: u1,…uk

Mean: μ

slide by Derek Hoiem

24



Another Eigenface set

25



PCA: Applications

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- Distance to line

- Use it for classification—near 0 for orange pts

- Possibly a good feature!

- Position along line

- Use it to specify which orange point it is

- Use v1 if want to compress data

26



Two views of PCA

• Want to minimize the squared distance between the 

original data and the reconstructed data, for a given 

dimensionality of the subspace k

• Minimize the red-green distance per data point

• Our approach so far

• Maximize the variance of the projected data, for a 

given dimensionality of the subspace k

• Maximize the “scatter” (i.e., variance) of the green points

• In general, maximize sum of the variances along all the 

components

27



Two views of PCA

• 𝑅𝑇Σ𝑅 = 𝐷 =
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑑

• 𝐷 is the covariance matrix of the transformed data

• The variance of the projected data along the j-th

component (coordinate) is 𝜆𝑗 =
1

𝑁
σ𝑖 𝑥𝑗

𝑖
− ഥ𝑥𝑗

2

• For a given k, when maximizing the variance of the 

projected data, we are trying to maximize

• 𝜆1 + 𝜆2 +⋯+ 𝜆𝑘

• We can show (but won’t) that the variance 

maximization formulation and minimum square 

reconstruction error formulation produce the same k-

dimensional bases
28



How to choose k?

• If need to visualize the dataset

• Use k=2 or k=3

• If want to use PCA for feature extraction

• Transform the data to be k-dimensional

• Use cross-validation to select the best k

29



How to choose k?

• Pick based on percentage of variance captured / lost

• Variance captured: the variance of the projected data

• Pick smallest k that explains some % of variance

• (𝜆1 + 𝜆2 +⋯+ 𝜆𝑘)/(𝜆1 + 𝜆2 +⋯+ 𝜆𝑘 +⋯+ 𝜆𝑁)

• Look for an “elbow” in Scree plot (plot of explained 

variance or eigenvalues)

• In practice the plot is never very clean

30



Limitations of PCA

• Assumption: variance == information

• Assumption: the data lies in a linear subspace only

31



Reconstruction

500 neurons

input

500 neurons 

250 neurons 

250 neurons 

30  code

Sq. Difference  

• Find the weights that produce as small a difference as possible between the 
input and the reconstruction

• Train using Backprop
• The code layer is a low-dimensional summary of the input

32

Autoencoders

𝑊(1)

𝑊(2)

𝑊(3)

𝑊(5)

𝑊(6)

𝑊(7)



Autoencoders

• The Encoder can be used

• To compress data

• As a feature extractor

• If you have lots of unlabeled data and some labeled data, train 

an autoencoder on unlabeled data, then a classifier on the 

features (semi-supervised learning)

• The Decoder can be used to generate images given 

a new code

33



Autoencoders and PCA

input

reconstruction

• Input: 𝑥
• Hidden layer: 𝑊𝑇𝑥
• Reconstruction: 𝑊𝑊𝑇𝑥
• Minimize σ𝑖 | |𝑊𝑊𝑇𝑥 − 𝑥 2 -- the square reconstruction error, as in PCA
• Just one set of weight parameters, transposed

Weights: 𝑊

Weights: 𝑊𝑇

Linear activation

34

• PCA can be viewed as a special case of an autoencoder
• We can “tie” the encoder and decoder weights to make sure 

the architecture works the same way PCA does
• This is sometimes useful for regularization


