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Discriminative vs Generative Models

v

Build a classifier that
learns a decision boundary

Models p(y|x) directly

v

Build a model of what data
in each class looks like

Models p(x|y) for each
value of y and p(y) and
then use Bayes’ rule to find

p(ylx)



Discriminative vs Generative Models

Last Class:

e Single binary feature

* Single Gaussian feature

* Many binary features (Naive Bayes)

This Hour:
* Many Gaussian features
* Gaussian Bayes Classifier
* (aka) Gaussian Discriminant Analysis

But first, let’s review the Multivariate
Gaussian

v




Multivariate Gaussian: a quick

intro (1)
x1 N(nul; 0-12)
e Consider X2 ) o | Nz, 022)
S ANy, 02)

* Here, we are sampling an n-dimensional point, with
every dimension sampled independently

* If we sample a lot of points, we’ll get something
that looks like a cloud, where large g}, means that
the cloud is “wider” along dimension k

* The cloud will be “axis-aligned,” in the sense that it
won’t be tilted.



Multivariate Gaussian: a quick
intro (2)

* The cloud will not look like this:

e But it could look like this:




Multivariate Gaussian: a quick
intro (3)

* The mathematical way to describe an “axis-aligned”
cloud is to say
. Cov(xi,xj) =0fori #]j
* |.e., the coordinates along axes i and j are uncorrelated

* A multivariate Gaussian distribution allows as to
specify the covariances between coordinates along

axes iand j.
* Reminder: Cov(xy,x;) = E[(x; — p1)(x2 — pz)]
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Multivariate Gaussian: a quick
intro (4)

 Specify the covariance matrix X:
Cov(x{,x1) ... Cov(xq,xy)
R
Cov(xy,,x1) ... Cov(xy, x,)
* We can have a multivariate Gaussian distribution
that’s specified by
X~N(u, Z)
* |t generates a cloud of points, but this time the
coordinates might be correlated



Multivariate Gaussian: a quick
intro (5)

* Suppose X~ ((8) ’ (é 12))

* That means that
e Var(x;) = Var(x,) = Cov(xy,xq1) = Cov(xy,x,) =1
e Cov(xy,x,) = .2

* The larger x4, the larger we expect x, to be



Multivariate Gaussian: a quick
intro (6)

* The density of the multivariate Gaussian:
o, %)

~ Jen

* k is the dimensionality of x (so dim(X) = k X k)
 |Z| = det(X)

1
exp(—5 (x = )" E7 (x — 1))



Learning a Gaussian

 We observe a bunch of points D = {x(l),x(z), }

* We assume that they were all generated by a single
(multivariate) Gaussian

* We can learn it using maximum likelihood: maximize
the probability P(D|60) that the data was generated
using a Gaussian parameterized by 6 = {u, X}.

* We can show (using calculus) that the ML estimates

are:
1 1, T
A= szm $= aZ(x@ — 2)(x® — %)
i=1 i=1



1< 1<
0= aix(“ $= EZ(xa) — ) - x)"
i=1 =1

1
« i ==Y"M_ x makes sense: the mean of the

Gau55|an is the mean of the vectors x

* The (k, n)-th component of 237, (x® - 2)(x® - )" i
the estimated Cov(xy, Xn),—5n, (x - %) (x “—ﬁ)
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Figure: Probability density function
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Figure: Contour plot of the pdf
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var(x1) > var(xz) var(x1) < var(x)

var(xy) = var(xz)

3k
2L

0k

Probability density function

-2

Contour plot of the pdf

Figure

-6

-5

ApsuaQ Apgeqoid

3k
2k

0k

2L
3L
4|

Figure

13



14

4|,

00
n“ml
—_ ®
o
N
|
N
c _ _
-m + N - 2 ooy
0
c
3
[ S
N\
51 .qW._.
o c
9
Lo
o 2
/fll\\ . —_
0
| Q
2 o
- - - I o B o — N |
Q
—
5 —
el
LL
N
O
— O
N—
|
N

Figure: Contour plot of the pdf
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Cov(x1,x2) =0
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Figure: Probability density function
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Figure: Contour plot of the pdf
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Gaussian Bayes Classifier

e Classifier:
P(y =c)P(x|ly =c)

Py =clx) =

* Just like before:
cyap = argmax.P(c|x)
P(x]c)P(c)
P(x)
= argmax.P(x |c)P(c)
— argmaxcf(x; e Z)P(c)

2o Py =c)P(xly = ¢')

= argmax,



Gaussian Bayes Classifier

e Classifier:

by = ey = PO =OPGly =0

P(x)
Recall:
P(x]0) = ———— exp(— = (¥ — p)TE L (x — o))
J (2m)k (2| 2 oo i
Then
log P(c|x)

= logP(xIc) + log P(c) — log P(x)

I 1]+ Ty—1
— —Elog(ZT[) — Elongk | — E(x — ,uc) z:C (X _ .uc)

+1log P(c) — log P(x)




Gaussian Bayes Classifier

log P(c|x)

1 1
— —Elog(Zn) + 5108|2c_1| —3 (x — )25 (x — pe)

+log P(c) — log P(x)

Decision Boundary:

1 _ 1 _ '

- (x _ .uC)TZC 1(x o .uc):_ (x o ﬂcr)Tzcrl(x — Uc ) + CONST
2 2

This is quadratic in terms of x!
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Learning

e Learn each Gaussian (as in this lecture)

 Learn P(c) with the class as a Bernoulli variables (as for
Naive Bayes)

* Simplification:
* If x is too high-dimensional, covariance matrix has many
parameters
e Can save parameters by using a shared covariance for both
classes

* |n this case, the decision boundary is linear
* Why? Set P(x|]c = 0) = P(x|c = 1), and see that the quadratic
terms cancel out



Comparison to Logistic Regression

* We can show (analogously to what we did with Naive Bayes)
that if we share the covariance matrix between all classes, we
retrieve the same form as logistic regression

P(y = c|x1, ...,xp) B
logp(y = c'|xg, ., Xp) = Bot 2B

 BUT Gaussian Bayes makes stronger assumptions

e Class-conditional data is multivariate Gaussian
* If true, Gaussian Bayes is better

» Logistic regression is more robust

* If the model is not exactly correct, the outputs of GDA will make less
sense



Example

Observation per patient: White blood cell count & glucose value.
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)

Naive Bayes (acc 0.780) istic regression (acc 0.722)
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