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Discriminative vs Generative Models
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Build a classifier that 
learns a decision boundary

Models 𝑝 𝑦 𝑥 directly

Build a model of what data 
in each class looks like

Models 𝑝 𝑥 𝑦 for each 
value of y and 𝑝 𝑦 and 
then use Bayes’ rule to find 
𝑝 𝑦 𝑥



Discriminative vs Generative Models
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Last Class:
• Single binary feature
• Single Gaussian feature
• Many binary features (Naïve Bayes)

This Hour:
• Many Gaussian features

• Gaussian Bayes Classifier
• (aka) Gaussian Discriminant Analysis

But first, let’s review the Multivariate 
Gaussian



Multivariate Gaussian: a quick 
intro (1)

• Consider 

𝑥1
𝑥2
…
𝑥𝑛

~

𝑁(𝜇1, 𝜎1
2)

𝑁(𝜇2, 𝜎2
2)

…
𝑁(𝜇𝑛, 𝜎𝑛

2)
• Here, we are sampling an n-dimensional point, with 

every dimension sampled independently

• If we sample a lot of points, we’ll get something 
that looks like a cloud, where large 𝜎𝑘 means that 
the cloud is “wider” along dimension k

• The cloud will be “axis-aligned,” in the sense that it 
won’t be tilted. 
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Multivariate Gaussian: a quick 
intro (2)
• The cloud will not look like this:

• But it could look like this:
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Multivariate Gaussian: a quick 
intro (3)
• The mathematical way to describe an “axis-aligned” 

cloud is to say
• 𝐶𝑜𝑣 𝑥𝑖 , 𝑥𝑗 = 0 for 𝑖 ≠ 𝑗

• I.e., the coordinates along axes i and j are uncorrelated

• A multivariate Gaussian distribution allows as to 
specify the covariances between coordinates along 
axes i and j.
• Reminder: 𝐶𝑜𝑣 𝑥1, 𝑥2 = 𝐸 𝑥2 − 𝜇1 𝑥2 − 𝜇2

≈
1

𝑁
∑(𝑥1

𝑖
− 𝑥1)(𝑥2

𝑖
− 𝑥2)
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Multivariate Gaussian: a quick 
intro (4)
• Specify the covariance matrix Σ:

Σ =
𝐶𝑜𝑣(𝑥1, 𝑥1) … 𝐶𝑜𝑣(𝑥1, 𝑥𝑛)

… … …
𝐶𝑜𝑣(𝑥𝑛, 𝑥1) … 𝐶𝑜𝑣(𝑥𝑛, 𝑥𝑛)

• We can have a multivariate Gaussian distribution 
that’s specified by

𝑋~𝑁(𝜇, Σ)

• It generates a cloud of points, but this time the 
coordinates might be correlated
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Multivariate Gaussian: a quick 
intro (5)

• Suppose 𝑋~
0
0

,
1 .2
.2 1

• That means that 
• 𝑉𝑎𝑟 𝑥1 = 𝑉𝑎𝑟 𝑥2 = 𝐶𝑜𝑣 𝑥1, 𝑥1 = 𝐶𝑜𝑣 𝑥2, 𝑥2 = 1

• 𝐶𝑜𝑣 𝑥1, 𝑥2 = .2

• The larger 𝑥1, the larger we expect 𝑥2 to be
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Multivariate Gaussian: a quick 
intro (6)
• The density of the multivariate Gaussian:

𝑓 𝑥; 𝜇, Σ

=
1

2𝜋 𝑘|Σ|
exp(−

1

2
𝑥 − 𝜇 𝑇Σ−1(𝑥 − 𝜇) )

• k is the dimensionality of x (so dim Σ = 𝑘 × 𝑘)

• Σ = det(Σ)
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Learning a Gaussian

• We observe a bunch of points 𝐷 = 𝑥 1 , 𝑥 2 , …

• We assume that they were all generated by a single 
(multivariate) Gaussian

• We can learn it using maximum likelihood: maximize 
the probability 𝑃(𝐷|𝜃) that the data was generated 
using a Gaussian parameterized by 𝜃 = {𝜇, Σ}.

• We can show (using calculus) that the ML estimates 
are:

Ƹ𝜇 =
1

𝑚


𝑖=1

𝑚

𝑥(𝑖) , Σ =
1

𝑚


𝑖=1

𝑚

𝑥(𝑖) − ҧ𝑥 𝑥(𝑖) − ҧ𝑥
𝑇
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Ƹ𝜇 =
1

𝑚


𝑖=1

𝑚

𝑥(𝑖) , Σ =
1

𝑚


𝑖=1

𝑚

𝑥(𝑖) − ҧ𝑥 𝑥(𝑖) − ҧ𝑥
𝑇

• ො𝜇 =
1

𝑚
∑𝑖=1
𝑚 𝑥(𝑖) makes sense: the mean of the 

Gaussian is the mean of the vectors 𝑥(𝑖)

• The (k, n)-th component of 1
𝑚
∑𝑖=1
𝑚 𝑥(𝑖) − ҧ𝑥 𝑥(𝑖) − ҧ𝑥

𝑇 is 
the estimated 𝐶𝑜𝑣(𝑥𝑘 , 𝑥𝑛), 

1

𝑚
∑𝑖=1
𝑚 𝑥𝑘

(𝑖)
− 𝑥𝑘 𝑥𝑛

(𝑖)
− 𝑥𝑛
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Gaussian Bayes Classifier

• Classifier:

𝑃(𝑦 = 𝑐|𝒙) =
𝑃 𝑦 = 𝑐 𝑃 𝒙 𝑦 = 𝑐

∑𝑐′𝑃 𝑦 = 𝑐′ 𝑃 𝒙 𝑦 = 𝑐′

• Just like before:
𝑐𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃 𝑐 𝒙

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑐
𝑃 𝒙 𝑐 𝑃(𝑐)

𝑃(𝒙)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃 𝒙 𝑐 𝑃 𝑐

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑓 𝒙; 𝜇𝑐 , Σc 𝑃 𝑐
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Gaussian Bayes Classifier

• Classifier:

𝑃(𝑦 = 𝑐|𝒙) =
𝑃 𝑦 = 𝑐 𝑃 𝒙 𝑦 = 𝑐

𝑃(𝒙)

Recall:

𝑃(𝒙|𝑐) =
1

2𝜋 𝑘|Σc|
exp(−

1

2
𝒙 − 𝜇𝑐

𝑇Σ𝑐
−1(𝑥 − 𝜇𝑐))

Then
log 𝑃(𝑐|𝒙)
= log 𝑃 𝑥 𝑐 + log 𝑃 𝑐 − log 𝑃 𝑥

= −
𝑘

2
log 2𝜋 −

1

2
log Σ𝑘

−1 −
1

2
𝒙 − 𝜇𝑐

𝑇Σ𝑐
−1 𝑥 − 𝜇𝑐

+ log 𝑃 𝑐 − log 𝑃 𝑥
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Gaussian Bayes Classifier

log 𝑃(𝑐|𝒙)

= −
𝑘

2
log 2𝜋 +

1

2
log Σ𝑐

−1 −
1

2
𝒙 − 𝜇𝑐

𝑇Σ𝑐
−1 𝒙 − 𝜇𝑐

+ log 𝑃 𝑐 − log 𝑃 𝑥

Decision Boundary:
1

2
𝒙 − 𝜇𝑐

𝑇Σ𝑐
−1 𝒙 − 𝜇𝑐 =

1

2
𝒙 − 𝜇𝑐′

𝑇Σ𝑐′
−1 𝒙 − 𝜇𝑐′ + 𝐶𝑂𝑁𝑆𝑇

This is quadratic in terms of x!
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Learning

• Learn each Gaussian (as in this lecture)

• Learn 𝑃 𝑐 with the class as a Bernoulli variables (as for 
Naïve Bayes)

• Simplification:
• If x is too high-dimensional, covariance matrix has many 

parameters
• Can save parameters by using a shared covariance for both 

classes
• In this case, the decision boundary is linear

• Why? Set 𝑃 𝑥 𝑐 = 0 = 𝑃(𝑥|𝑐 = 1), and see that the quadratic 
terms cancel out
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Comparison to Logistic Regression

• We can show (analogously to what we did with Naïve Bayes) 
that if we share the covariance matrix between all classes, we 
retrieve the same form as logistic regression

log
𝑃 𝑦 = 𝑐 𝑥1, … , 𝑥𝑝
𝑃 𝑦 = 𝑐′ 𝑥1, … , 𝑥𝑝

= 𝛽0 + ∑𝑗 𝛽𝑗𝑥𝑗

• BUT Gaussian Bayes makes stronger assumptions

• Class-conditional data is multivariate Gaussian

• If true, Gaussian Bayes is better

• Logistic regression is more robust

• If the model is not exactly correct, the outputs of GDA will make less 
sense
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Example
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Example
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