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Naïve Bayes: Review

• Training data:
𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … , 𝑥 𝑚 , 𝑦 𝑚

• 𝑥: an p-dimensional vector of binary variables
• 𝑦: a discrete label

• Assumption:
𝑃 𝑥1, . . . , 𝑥𝑝 𝑦 = 𝑐 = Π𝑖=1

𝑝
𝑝 𝑥𝑗 𝑦 = 𝑐

• Estimate:
𝑃 𝑥𝑗 = 1 𝑦 = 𝑐 ≈

𝑐𝑜𝑢𝑛𝑡(𝑥𝑗=1,𝑦=𝑐)

𝑐𝑜𝑢𝑛𝑡(𝑦=𝑐)

𝑃 𝑦 = 𝑐 ≈
𝑐𝑜𝑢𝑛𝑡(𝑦=𝑐)

𝑚

• Predict:
𝑃 𝑦 = 𝑐 𝑥 =

𝑃 𝑦=𝑐 𝑃(𝑥|𝑦=𝑐)

σ𝑐′ 𝑃 𝑦=𝑐′ 𝑃(𝑥|𝑦=𝑐′)

Parameters:

𝜃𝑗,𝑐 = 𝑃 𝑥𝑗 = 1 𝑦 = 𝑐

𝜋𝑐 = 𝑃(𝑦 = 𝑐)



Naïve Bayes: Num. of Parameters

• 𝜃𝑗,𝑐 = 𝑃 𝑥𝑗 = 1 𝑦 = 𝑐
• #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × dim(𝑥) parameters

• 𝑃 𝑥𝑗 = 0 𝑦 = 𝑐 = 1 − 𝜃𝑖𝑗 𝑐

• 𝜋𝑐 = 𝑃(𝑦 = 𝑐)
• (#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1) parameters

• 𝜋1 = 1 − σ𝑐′=2..#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝜋𝑐′

• A total of #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × dim 𝑥 + #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1
parameters to estimate
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What if we don’t know the labels?

• If we know the parameters, we can guess the labels

𝑃 𝑦 = 𝑐 𝑥 =
𝑃 𝑦=𝑐 𝑃(𝑥|𝑦=𝑐)

σ𝑐′ 𝑃 𝑦=𝑐′ 𝑃(𝑥|𝑦=𝑐′)

• Can guess 𝑦 = 1 if 𝑃 𝑦 = 𝑐 𝑥 > 0.5, or just be 
happy with the probability that 𝑦 = 𝑐: the 
expectation of an indicator variable that checks if 
the class is 𝑐
• 𝐸 𝐼 𝑦 = 𝑐 |𝑥 = 𝑃 𝑦 = 𝑐 𝑥

• If we know the labels, we can estimate the 
parameters
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𝐼 𝑦 = 𝑐 = ቊ
1, 𝑦 = 𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Expectation-Maximization

• Start with a random guess of the parameters 𝜃 and 𝜋

• Repeat:
• For each example 𝑖 in the training set, compute

𝐸𝜃,𝜋 𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖) = 𝑃𝜃,𝜋 𝑦(𝑖) = 𝑐 𝑥(𝑖) for every class 𝑐

• Compute the expected number of examples for every class 𝑐
and feature 𝑗
ෟ𝑐𝑜𝑢𝑛𝑡 𝑥𝑗 = 1, 𝑦 = 𝑐 = 𝐸𝜃,𝜋 σ

𝑖|𝑥𝑗
𝑖
=1
𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖) = σ

𝑖|𝑥𝑗
𝑖
=1
𝐸𝜃,𝜋 𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖)

ෟ𝑐𝑜𝑢𝑛𝑡 𝑦 = 𝑐 = 𝐸𝜃,𝜋 ෍

𝑖

𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖)

• Re-estimate the 𝜃 and 𝜋 using the new counts
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E-step

M-step



E-step

𝐸𝜃,𝜋 𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖) = 𝑃𝜃,𝜋 𝑦(𝑖) = 𝑐 𝑥(𝑖)

• Assume you know the parameters, estimate the 
labels

• We use soft assignment: a point can be assigned to 
y = 1 with probability 0.9 and to y = 0 with 
probability 0.1
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M-step

ෟ𝑐𝑜𝑢𝑛𝑡 𝑥𝑗 = 1, 𝑦 = 𝑐 = 𝐸𝜃,𝜋 σ
𝑖|𝑥𝑗

𝑖
=1
𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖) = σ

𝑖|𝑥𝑗
𝑖
=1
𝐸𝜃,𝜋 𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖)

ෟ𝑐𝑜𝑢𝑛𝑡 𝑦 = 𝑐 = 𝐸𝜃,𝜋 ෍

𝑖

𝐼 𝑦(𝑖) = 𝑐 |𝑥(𝑖)

Re-estimate the 𝜃 and 𝜋 using the new counts

• Compute the counts for each class and feature, 
assuming that the soft assignments from the E-step 
are correct

• Re-estimate 𝜃 and 𝜋
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The EM Algorithm: Summary

• Initialiaze 𝜋 and 𝜃

• Repeat
• E-step: compute soft assignments for each training 

sample

• M-step: re-estimate 𝜋 and 𝜃 based on the new soft 
assignments
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Why does it work?

• Intuitively, the E-step computes the best 
assignments under the current 𝜋 and 𝜃

• The M-step computes the best 𝜋 and 𝜃 given the 
current assignments

• It can be shown* that the EM algorithm optimizes a 
lower bound on the marginal probability of the 
data

*But we aren’t doing it in this class
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Probability of the data

𝑃𝜋,𝜃 𝑥 =ෑ

𝑖

𝑃𝜋,𝜃 𝑥 𝑖 =ෑ

𝑖

෍

𝑦

𝑃𝜋,𝜃(𝑥
𝑖 , 𝑦)

• Finding 𝜋 and 𝜃 that maximize the probability of 
the data means finding a model for which the data 
we observe is likely
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Interpreting 𝜋 and 𝜃

• We don’t know the names of labels, but for each 
“anonymous” label, we obtain the probability of 
each keyword appearing
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Sample results

• 𝜃𝐴 = 0.6, 𝜃𝐵 = 0.4

• 𝑃 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 𝐴 = 0.5, 𝑃 𝑠𝑒𝑛𝑑 𝐴 =
0.6, 𝑃 𝑝𝑎𝑝𝑒𝑟 𝐴 = 0.1, 𝑃 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 𝐵 =
0.1, 𝑃 𝑠𝑒𝑛𝑑 𝐵 = 0.6, 𝑃 𝑝𝑎𝑝𝑒𝑟 𝐵 = 0.3

• Interpretation: label A means “spam”, label B 
means “not spam”
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The EM Algorithm in General

• We observe the data 𝑥, and have latent 
(unobserved) data 𝑦. For (unknown) parameters 𝜃, 
we have the distribution

𝑃 𝑥, 𝑦 𝜃

• We want to learn 𝜃 using Maximum Likelihood: find 
the 𝜃 for which 𝑃 𝑥 𝜃 = σ𝑦𝑃(𝑥, 𝑦|𝜃) is 
maximized 

• If we know 𝑦, it’s easy to find 𝜃 using Maximum 
likelihood

• If we know 𝜃, it’s easy to find 𝑃(𝑦|𝑥, 𝜃)
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The entire dataset 

𝑥(1), 𝑥(2), …

All unknown params


