The Expectation-Maximization Algorithm: Bernoulli Mixture Models Case Study and the General Case

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa₁Zhang

Naïve Bayes: Review

- Training data:
 - $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
 - *x*: an p-dimensional vector of binary variables
 - *y*: a discrete label
- Assumption: $P(x_1, ..., x_p | y = c) = \prod_{i=1}^p p(x_i | y = c)$
- Estimate: $P(x_{j} = 1 | y = c) \approx \frac{count(x_{j}=1, y=c)}{count(y=c)}$ Parameters: $P(y = c) \approx \frac{count(y=c)}{m}$ Parameters: $\theta_{j,c} = P(x_{j} = 1 | y = c)$ $\pi_{c} = P(y = c)$
- Predict:

$$P(y = c | x) = \frac{P(y=c)P(x|y=c)}{\sum_{c'} P(y=c')P(x|y=c')}$$

Naïve Bayes: Num. of Parameters

•
$$\theta_{j,c} = P(x_j = 1 | y = c)$$

• $#classes \times dim(x)$ parameters

•
$$P(x_j = 0 | y = c) = 1 - \theta_{ijc}$$

- $\pi_c = P(y = c)$
 - (#*classes* 1) parameters

•
$$\pi_1 = 1 - \sum_{c'=2..\#classes} \pi_{c'}$$

A total of #*classes* × dim(x) + #*classes* - 1
 parameters to estimate

What if we don't know the labels?

• If we know the parameters, we can guess the labels

$$P(y = c | x) = \frac{P(y=c)P(x|y=c)}{\sum_{c'} P(y=c')P(x|y=c')}$$

- Can guess y = 1 if P(y = c|x) > 0.5, or just be happy with the probability that y = c: the expectation of an indicator variable that checks if the class is c
 - E[I[y = c]|x] = P(y = c|x)
- If we know the labels, we can estimate the parameters

$$I[y = c] = \begin{cases} 1, y = c \\ 0, otherwise \end{cases}$$

Expectation-Maximization

- Start with a random guess of the parameters heta and π
- Repeat:
 - For each example *i* in the training set, compute

E-step

$$E_{\theta,\pi}[I[y^{(i)} = c]|x^{(i)}] = P_{\theta,\pi}(y^{(i)} = c|x^{(i)}) \text{ for every class } c$$

 Compute the expected number of examples for every class c and feature j

$$\widehat{count}(x_{j} = 1, y = c) = E_{\theta,\pi} \left[\sum_{i \mid x_{j}^{(i)} = 1} I[y^{(i)} = c] \mid x^{(i)} \right] = \sum_{i \mid x_{j}^{(i)} = 1} E_{\theta,\pi} \left[I[y^{(i)} = c] \mid x^{(i)} \right]$$

$$\widehat{count}(y = c) = E_{\theta,\pi} \left[\sum_{i} I[y^{(i)} = c] \mid x^{(i)} \right]$$

M-step – • Re-estimate the θ and π using the new counts

E-step

$$E_{\theta,\pi} \left[I[y^{(i)} = c] | x^{(i)} \right] = P_{\theta,\pi} \left(y^{(i)} = c | x^{(i)} \right)$$

- Assume you know the parameters, estimate the labels
- We use *soft assignment*: a point can be assigned to y = 1 with probability 0.9 and to y = 0 with probability 0.1

M-step

$$\widehat{count}(x_{j} = 1, y = c) = E_{\theta,\pi} \left[\sum_{i|x_{j}^{(i)}=1} I[y^{(i)} = c] |x^{(i)}] = \sum_{i|x_{j}^{(i)}=1} E_{\theta,\pi} \left[I[y^{(i)} = c] |x^{(i)}] \right]$$

$$\widehat{count}(y = c) = E_{\theta,\pi} \left[\sum_{i} I[y^{(i)} = c] |x^{(i)}] \right]$$

Re-estimate the θ and π using the new counts

- Compute the counts for each class and feature, assuming that the soft assignments from the E-step are correct
- Re-estimate θ and π

The EM Algorithm: Summary

- Initialiaze π and θ
- Repeat
 - E-step: compute soft assignments for each training sample
 - M-step: re-estimate π and θ based on the new soft assignments

Why does it work?

- Intuitively, the E-step computes the best assignments under the current π and θ
- The M-step computes the best π and θ given the current assignments
- It can be shown* that the EM algorithm optimizes a lower bound on the marginal probability of the data

*But we aren't doing it in this class

Probability of the data

$$P_{\pi,\theta}(x) = \prod_{i} P_{\pi,\theta}(x^{(i)}) = \prod_{i} \sum_{y} P_{\pi,\theta}(x^{(i)}, y)$$

• Finding π and θ that maximize the probability of the data means finding a model for which the data we observe is likely

Interpreting π and heta

 We don't know the names of labels, but for each "anonymous" label, we obtain the probability of each keyword appearing

Sample results

- $\theta_A = 0.6$, $\theta_B = 0.4$
- P(password|A) = 0.5, P(send|A) =0.6, P(paper|A) = 0.1, P(password|B) =0.1, P(send|B) = 0.6, P(paper|B) = 0.3
- Interpretation: label A means "spam", label B means "not spam"

The EM Algorithm in General

• We observe the data x, and have latent (unobserved) data y. For (unknown) parameters θ , we have the distribution $P(x, y | \theta)$ All unknown params

 $x^{(1)}, x^{(2)}, \dots$

- We want to learn θ using Maximum Likelihood: find the θ for which $P(x|\theta) = \sum_{y} P(x, y|\theta)$ is maximized
- If we know y, it's easy to find θ using Maximum likelihood
- If we know θ , it's easy to find $P(y|x,\theta)$