The Expectation-Maximization Algorithm:

Bernoulli Mixture Models Case Study and the General Case
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Naive Bayes: Review

* Training data:
(x®, y®), (x@,y@), ., (x5

e x:an p-dimensional vector of binary variables
* y:adiscrete label

* Assumption: .
P xl,...,xp|y = c) = II;,_, p(xj|y = c)

. Estirr;)a(te: B 1| B ) _ count(xj=1,y=c)
Xj = HY =€)~ count(y=c) Parameters:
_ _ count(y=c) Ojc = P(x- = 1|y = C)
Py=c)= = 7o = P(y = ©)
* Predict: _ _

Yer P(y=c")P(x|y=cr)



Naive Bayes: Num. of Parameters

* 0 =Py = 1]y =)
* #classes X dim(x) parameters
¢ P(X] — O|y= C) — 1_9ijc
‘T, =Py =c¢)
* (#classes — 1) parameters
*myp=1- z:c’=2..#classes T

* A total of #classes X dim(x) + #classes — 1
parameters to estimate



What if we don’t know the labels?

* If we know the parameters, we can guess the labels
_ _ P(y=0)P(x|y=c)
PO = el = 5 G y=cn
e Canguessy = 1if P(y = c|x) > 0.5, or just be
happy with the probability that y = c: the

expectation of an indicator variable that checks if
the class is ¢

* E[lly = cl|x] = P(y = c[x)
* If we know thelabels, we can estimate the
parameters

l,y=c
0, otherwise

I[y=c]={



Expectation-Maximization

 Start with a random guess of the parameters 8 and

* Repeat:
* For each e>§ample Lin the training set, compute
E-step Eg 2|1|y® = c]|x®] = Pg o (y® = c|x®) for every class ¢

* Compute the expected number of examples for every class ¢
and feature j

cait (= 1y =€) = By L0, IO = ellr®)] = 0, o170 = c]ix¥]
]

z 1[y® = ¢]jx®

i

M-step - ¢ Re-estimate the 6 and m using the new counts

count (y =c) =Eg,




E-step

Ee,n[l[y(i) — C]|X(i)] = Pe,n(y(i) — Clx(i))

* Assume you know the parameters, estimate the
labels

* We use soft assignment: a point can be assighed to
y = 1 with probability 0.9 and to y = 0 with
probability 0.1



M-step

th (x] = 1,}/ = C) = E9,7T [Zilx](_i)=11[y(i) = C]lx(l)] = Zilei)=1E9,T[ [I[y(l) = C]lx(l)]
count (y =c) = Eg, ZI[y(i) = c]|x<i)‘

l
Re-estimate the 8 and  using the new counts

* Compute the counts for each class and feature,
assuming that the soft assignments from the E-step
are correct

e Re-estimate @ and



The EM Algorithm: Summary

* Initialiaze T and @

* Repeat

* E-step: compute soft assignments for each training
sample

* M-step: re-estimate w and 6 based on the new soft
assignments



Why does it work?

* Intuitively, the E-step computes the best
assignments under the current T and 6

* The M-step computes the best T and 6 given the
current assignments

* [t can be shown™ that the EM algorithm optimizes a
lower bound on the marginal probability of the
data

*But we aren’t doing it in this class



Probability of the data

Pro(x) = Hpn,e(x(i)) =1 [an,e(x(i);ﬁ
i y

i

* Finding w and 6 that maximize the probability of
the data means finding a model for which the data
we observe is likely



Interpreting ™ and @

 We don’t know the names of labels, but for each
“anonymous” label, we obtain the probability of
each keyword appearing



Sample results

+9,=06,05 =04

* P(password|A) = 0.5, P(send|A) =
0.6, P(paper|A) = 0.1, P(password|B) =
0.1, P(send|B) = 0.6, P(paper|B) = 0.3

* Interpretation: label A means “spam”, label B
means “not spam”



The EM Algorithm in General

The entire dataset
x@ x@

* We observe the data x, and have latent
(unobserved) data y. For (unknown) parameters 0,
we have the distribution

P(x; Y| 8) All unknown params

* We want to learn 6 using Maximum Likelihood: find
the 6 for which P(x|0) = X, P(x,y|0) is
maximized

* If we know v, it’s easy to find 8 using Maximum
likelihood

* If we know 0, it’s easy to find P(y|x, 0)



