Deep Convolutional Neural Networks

C3: 1. maps 16@10x10
INPUT %2!oature maps S4: 1. maps 16@5x5

3232 S2:f. ma
6@14x1fs

I
| Full conAection l Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

Slides from Geoffrey Hinton, Alyosha Efros, CSC411/2515: Machine Learning and Data Mining, Winter 2018
Andrej Karpathy

Michael Guerzhoy and Lisalzhang

LeNet: a deep neural network

C1- fash C3:f. maps 16@10x10
: ure maps S4: f. maps 16@5x5
INPUT 6@28x28 ps

‘ Fullconljlection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

* Builtin 80s by Yann LeCun (at one time a post-doc at
UofT) at AT&T
* Recognized handwritten characters
* Main ideas:
* Deep network (many layers)
* Convolutional layers
* Subsampling/pooling layers

Yann LeCun

LeNet-5 errors

& 4
1=>5 6=>5 7=>3

5=>3 4=>8 2=>8 3

3 ¥F O

2 2=>1

d 13 # 8

A B
4=>6 3=>5 B=>

v 8=>7 0=>€ Z? 37 3)3 9?>4
W %

®

1

9=>4 B8=>0 7->8 5->3

1}

{ YU

9

2

¢

& 35

8=>2 5=>3 4§4=>8 3=>9 6=>0 9=>8 4=>9 6=>1 9=>4 9=>1

b & <« ¥

3=>5 3=>2 9=>5 E=>0 6=>0 6=>0 £=>8

A 2

> 9

y & L g

2=>0 6=>1

Ge=>4

A

1. % 7 9 4§

=>T 9=>T7 4=>3 9=>4 9=>4 9=->4

9

=->3 9=>4 4->6

2
&

4=>6

7

2. &85 2

=27 4=>2 B=>4 3=>5 8=>4 ©=>5 8=>5 3=>8

A % 5 %

1

g o D - 7 ¢ ¥
=->7 1=>6 4=>9 2=>1

1=>5 9«38 E=>3 0=>2 6£=>5 9=>5

‘.

6 &

/

4
T=>2 &=>5 9=>7 &=>1 5=>5 5=>0

7

2 o N2 22

2=>8 B8=>5

&
2=>8

7
4=>9

LeNet Performance

Error Rate (%)

Test error (no distortions)

) o
d.8
‘“‘x Test error

oL (with distortions)
0.4 P
_-
2.2 b Training error (no distortions)
0 L L Il L 1 L L 1 L J
0 10 20 30 al a0 ED Tl BO 11 LOog

Training Set Size (x1000)

Computing Features

The red connections all

e |dea: each neuron on the have the same weight

higher layer is detecting the
same feature, but in different
locations on the lower layer
* Detecting=the output is high if
the feature is present
* |t's the same feature because
the weights are the same

* Note: each neuron is only
connected with non-zero
weights to a small area in the
input

Feature Detection

* The weights of each unit in the upper layer can be represented as a 2D
array

* To compute the input to each neuron
in the upper layer, we are computing 1101-1
the dot product between the 2D array
(called kernel) and the area of the

lower layer to which the neuron 210]-2
is connected (called the receptive 1 1ol
field) _

3x3 weights array
for a 3x3 area in the
input

* The operation of computing the feature layer from the lower layer is
called convolution (technically, “cross-correlation,” but the differences
between convolution and cross-correlation is unimportant here.)

Convolution Example: Sobel Filter

]

E 4

| %

I :

i 8

! § -2
-1

Vertical Edge |
(absolute value)

Convolution Example: Sobel Filter

Horizontal Edge
(absolute value)8

Convolution Example: Blob Detection

003 2 2 2 3 0 0)
0 2 3 5 5 5 3 2 0
3 3 5 3 0 3 5 3 3
2 53 -12 -23 -12 3 5 2
2 5 0 —-23 -40 -23 0 5 2
2 53 -12 -23 -12 3 5 2
3 3 5 3 0 3 5 3 3
0 2 3 5 5 5 3 2 0
0 0 3 2 2 2 3 0 0

-

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Output size:
(N - F) / stride + 1

eg.N=7F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/)2+1=3
stride 3=>(7-3)/3+1=2.33:\

n practice: Common to zero pad the border

0|0

0

0

0

o | o | o | o | O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F)/ stride + 1

n practice: Common to zero pad the border

000|000

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

7x7 output!

iIn general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F =3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Convolutional layers: RGB images

Convolution Layer

32x32x3 image

7

Filters always extend the full

. depth of the input volume

32

/

Sxdx3 filter

/7

I| Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Convolution Layer

_—— 32x32x3 image
5x5x3 filter w

e

1 number:

=
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias’

wie+b

22

I
I
i
I
—

I

P

V
=0

32

32X32X3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

28

28

23

e
I
I
—
I

e

V
=

32

32x32X3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

28

/ 28

24

activation maps

32

28

Convolution Layer

32 28
3 6

We stack these up to get a "new image” of size 28x28x6!

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters In this layer?
each filter has 5*5*3 + 1 = /6 params (+1 for bias)

=> 7610 =760

27

Convolutional Layer

» Accepts a volume of size W; x H; x D,
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride S,
o the amount of zero padding P.
 Produces a volume of size W x Hy x Dy where:
o Wo=(W, —F+2P)/S+1
o Hy = (Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° Dg =K

o

o

o

and K biases.
« In the output volume, the d-th depth slice (of size Wy x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - D) - K weights

28

Convolutional Layers Summary Again

Common settings:

Summary. To summarize, the Conv Layer:

K = (powers of 2, e.g. 32, 64, 128, 512)
Accepts a volume of size W; x H; x Dy « Fe3i Be=i P=1
Requires four hyperparameters: - = o
o Number of filters K, = FeE8.8=1,P=2 :
o their spatial extent F', = Fegy =i, =] (Whatever fItS)
o the stride S, - F=1,S=1,P=0
o the amount of zero padding P.

Produces a volume of size Wy x Hy x D5 where:

o Wo=(W, —F+2P)/S+1

o Hy = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° D2 = I
With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - D) - K weights
and K biases.
In the output volume, the d-th depth slice (of size Wy x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

29

(1x1 convolutions?)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Useful because they summarize data.

Example: a 1x1 filter that computes the grayscale image from and RGB

input

32

56

56

30

Preview: what sort of filters do
convolutional layers learn?

. 4

Low-Level| |Mid-Level| |High-Level] | Trainable i
Feature Feature Feature Classifier

"eature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

31

Pooling Features (“subsampling”)

The job of complex cells in the
visual cortex
Single depth slice

* Max Pooling 1112

X

* Is there a diagonal edge somewhere
in an area of the image?

* Take the maximum over the _
responses to the feature detector in
the area

Average Pooling

* Is there a blobs pattern in an area of
the image?

» Take the average over the responses
to the feature detectors in the area

* Max Pooling generally works better

max pool with 2x2 filters

0
8 and stride 2
0
4

1
DRI N 7
3|2 [
1] 2 (g

¥

Max Pooling as Hierarchical Invariance

* At each level of the hierarchy,
we use an “or” to get
features that are invariant or
across a bigger range of
transformations. O

e (Average Pooling is a little bit
like an “AND”)

* At the top of the network, we
can have a neuron that lights T O
up if a certain shape appears
anywhere in the image

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

> B 112
224 downsampling

224

y

34

Pooling Layer

Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size W5 x Hy x Dy where:
o Wo=(W; —F)/S+1
° H2 :(H1 —F)/S+1
© D2 = Dl
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Common settings:

F
F

I
W N
0w

I

2
2

35

Fully-Connected Layer

* Contains neurons that connect to the entire lower
year, as in ordinary neural networks

RELU RELU RELU RELU RELU RELU
CONV CONVl CO NV CONVlCONVl

;

Z
<
(@)
@)

truck
@lfplane
_S_hl p

horse

.

F,Z,—
=
-

7o E
=
e
=
E .
-

"ih"ﬁ}‘f‘.'\

Putting it All Together

Inpuc layer (31) 4 feature maps

. 1 (C1) 4 feature maps (52) 6 feature maps {C2) & feature maps

convolution layer I sub-sampling layer I convalution layer I sub-sampling layer l fully connecred MLF'l

* Different types of layers: convolution and subsampling.

* Convolution layers compute features maps: the
response to multiple feature detectors on a grid in the
lower layer

* Subsampling layers pool the features from a lower layer
into a smaller feature map

37

Why Convolutional Nets

* It’s possible to compute the same outputs in a fully
connected neural network, but
 The network is much harder to learn

* There is more danger of overfitting if we try it with a
really big network

* A convolutional network has fewer parameters due to weight
sharing*

* [t makes sense to detect features and then combine
them

* That’s what the brain seems to be doing

* Small fully connected networks can work very well, but are hard to train

Learning Convolutional Nets: Replicated Weights

cv=gWu; + Wu,)

0 /
a;, = (uy +uy)g Wuy + W u,)

—_ ulg’(Wul + WU,Z) + ng’(Wul + WUz)

* Note: if uqis positive but u, is negative, W
will be “pulled” in different directions by
the two

Learning Convolutional Nets: Max Pooling

ov 1,ul~ > uj,‘v’j * 1
0, otherwise

aui B

* The u’s are real, so let’s not
worry about them being
equal

* The gradient only flows to the
unit that’s responsible for the
value of v

* Makes sense! The other ones
aren’t likely detecting any
patterns

40

IMAGE Large Scale Visual Recognition Challenge

* About one million images, 1000 object categories in
the training set

* Task: what is the object in the image
* |.e., classify the image into one of 1000 categories

* Evaluation: is one of the best 5 guesses correct?

motor scooter

fire engine | dead-man's-fingers

motor scooter ~
black widow | lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golifcart Egyptian cat
. o
9(‘ e musnroom
vertible agaric
grille mushroom
pickup jelly fungus
beach wagon gill fungus

42

Human Performance on ImageNet

e http://karpathy.github.io/2014/09/02/what-i-
learned-from-competing-against-a-convnet-on-
imagenet/

* 5.1% error (i.e., none of the 5 guesses the person
makes are correct)

* Try it yourself!
e http://cs.stanford.edu/people/karpathy/ilsvrc/

43

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://cs.stanford.edu/people/karpathy/ilsvrc/

Dogs Are Hard to Classify!

— [~

SN Caated aheste leTer

Iﬂll.ﬂ.ﬁﬁlﬂll

DOasade Devmort. Dande Dnmont e

B e - dEE a2

Aredne Arndme Wwirer

Bk W= T

AIexNet (Krizhevsky et al. 2012)

R 7 I k% 58 7048 /zma dense
oy 128 e — —
13 \
\.' e
N 3 1_3« dense densa
1, 10
192 162 128 Max - |
Max 198 Max pooling £° 2048
pooling pooling
Full (simplified) AlexNet architecture: Details/Retrospectives:
[227x227x3] INPUT - first use of ReLU
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2 - used Norm layers (not common anymore)
[27x27x96] NORM1: Normalization layer - heavy data augmentation
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 _ dropout 05
[13x13x256] MAX POOL2: 3x3 filters at stride 2 batch si 128
[13x13x256] NORM2: Normalization layer - balcn size
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 - SGD Momentum 0.9
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 _ Learning rate 1e_21 reduced by 10

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1 I h | lat
[6x6x256] MAX POOL3: 3x3 filters at stride 2 manually wnen val accuracy plateaus

[4096] FC6 4096 neurons - L2 weight decay 5e-4

[4096] FG7: 4096 neurons -7 CNN ensemble: 18.2% -> 15.4%:s
[1000] ~C&: 1000 neurons (class scores)

Aside: ConvNets vs. Monkeys

* Extract the features (neuron activities) from the
Inferior Temporal Cortex of Rhesus Macaques when
the monkeys are looking at images

* Extract features from the top layers of ConvNets
when the ConvNets are looking at images

* Use both sets of features to classify images

Deep Neural Networks Rival the Representation of Primate IT
Cortex for Core Visual Object Recognition

Charles F. Cadieu'*, Ha Hong':?, Daniel L. K. Yamins', Nicolas Pinto', Diego Ardila', Ethan A.
Solomon', Najib J. Majaj!, James J. DiCarlo!

1 Department of Brain and Cognitive Sciences and McGovern Institute for Brain
Research, Massachusetts Institute of Technology, Cambridge, MA 02139

2 Harvard-MIT Division of Health Sciences and Technology, Institute for Medical
Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
* E-mail: Corresponding cadieu@mit.edu

(=1}
=
i

2

2

g

Accuracy (% correct)

o
gm
t <

*-14’.51“_'

47

A Brute Force Approach

* Convolutional Networks architectures use
knowledge about invariances to design the network
architecture/weight constraints

e Butit’s much simpler to incorporate knowledge of
invariances by just creating extra training data:

 for each training image, produce new training data by
applying all of the transformations we want to be
insensitive to (Le Net can benefit from this too)

* Then train a large, dumb net on a fast computer.

* This works surprisingly well if the transformations are
not too big

Deep Neural Networks as a Model
of Computation

Most people’s first instinct when they think about building an image
Classifier r is to write a complicated computer program
A deep neural network is a computer program:

hli = f1(x)

h2 = f2(h1)
h3 = £3(h2)
;9 = f9(h8)

Can think of every layer of a neural network as one step of a parallel
computation

Features/templates are the functions that are applied to the previous layers
Learning features <> Learning what function to apply at step t of the algorithm

Deep Learning

Differentiable
Programming

https://www.facebook.com/convolutionalmemes/photos/a.287833355004505.1073
741828.287764591678048/424941947960311/?type=3&theater

50

