
Deep Convolutional Neural Networks

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Slides from Geoffrey Hinton, Alyosha Efros,
Andrej Karpathy

1



LeNet: a deep neural network

2Yann LeCun

• Built in 80s by Yann LeCun (at one time a post-doc at 
UofT) at AT&T

• Recognized handwritten characters
• Main ideas:

• Deep network (many layers)
• Convolutional layers
• Subsampling/pooling layers



LeNet-5 errors

3



LeNet Performance

4



Computing Features

• Idea: each neuron on the 
higher layer is detecting the 
same feature, but in different 
locations on the lower layer
• Detecting=the output is high if 

the feature is present

• It’s the same feature because 
the weights are the same

• Note: each neuron is only 
connected with non-zero 
weights to a small area in the 
input

The red connections all 
have the same weight.

5



Feature Detection

• The weights of each unit in the upper layer can be represented as a 2D 
array

• To compute the input to each neuron
in the upper layer, we are computing
the dot product between the 2D array
(called kernel) and the area of the 
lower layer to which the neuron
is connected (called the receptive 
field)

• The operation of computing the feature layer from the lower layer is 
called convolution (technically, “cross-correlation,” but the differences 
between convolution and cross-correlation is unimportant here.)

-101

-202

-101

3x3 weights array

for a 3x3 area in the

input

6



-101

-202

-101

Vertical Edge

(absolute value)

Convolution Example: Sobel Filter

*

7



Convolution Example: Sobel Filter

-1-2-1

000

121

Horizontal Edge

(absolute value)

*

8



Convolution Example: Blob Detection

*

9



10



11



12



13



14



15



16



17



18



19



20



Convolutional layers: RGB images

21



22



23



24



25



26



27



Convolutional Layer

28



Convolutional Layers Summary Again

29



(1x1 convolutions?)

30

• Useful because they summarize data.
• Example: a 1x1 filter that computes the grayscale image from and RGB 

input



Preview: what sort of filters do 
convolutional layers learn?

31



Pooling Features (“subsampling”)

• The job of complex cells in the 
visual cortex

• Max Pooling
• Is there a diagonal edge somewhere 

in an area of the image?
• Take the maximum over the 

responses to the feature detector in 
the area

• Average Pooling
• Is there a blobs pattern in an area of 

the image?
• Take the average over the responses 

to the feature detectors in the area

• Max Pooling generally works better

32



Max Pooling as Hierarchical Invariance

• At each level of the hierarchy, 
we use an “or” to get 
features that are invariant 
across a bigger range of 
transformations.

• (Average Pooling is a little bit 
like an “AND”)

• At the top of the network, we 
can have a neuron that lights 
up if a certain shape appears 
anywhere in the image

or

or

or

33



Pooling Layer

34



Pooling Layer

35



Fully-Connected Layer

• Contains neurons that connect to the entire lower 
year, as in ordinary neural networks

36



Putting it All Together

• Different types of layers: convolution and subsampling. 
• Convolution layers compute features maps: the 

response to multiple feature detectors on a grid in the 
lower layer

• Subsampling layers pool the features from a lower layer 
into a smaller feature map 

37



Why Convolutional Nets

• It’s possible to compute the same outputs in a fully 
connected neural network, but
• The network is much harder to learn

• There is more danger of overfitting if we try it with a 
really big network
• A convolutional network has fewer parameters due to weight 

sharing*

• It makes sense to detect features and then combine 
them
• That’s what the brain seems to be doing

* Small fully connected networks can work very well, but are hard to train 38



Learning Convolutional Nets: Replicated Weights

• 𝑣 = 𝑔 𝑊𝑢1 +𝑊𝑢2

•
𝜕𝑣

𝜕𝑊
= 𝑢1 + 𝑢2 𝑔′ 𝑊𝑢1 +𝑊 𝑢2

= 𝑢1𝑔
′ 𝑊𝑢1 +𝑊𝑢2 + 𝑢2𝑔

′ 𝑊𝑢1 +𝑊𝑢2

• Note: if 𝑢1is positive but 𝑢2 is negative, W
will be “pulled” in different directions by
the two

𝑣

𝑢1 𝑢2

W 𝑤

39



Learning Convolutional Nets: Max Pooling

•
𝜕𝑣

𝜕𝑢𝑖
= ቊ

1, 𝑢𝑖 > 𝑢𝑗 , ∀𝑗 ≠ 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The u’s are real, so let’s not 
worry about them being 
equal

• The gradient only flows to the 
unit that’s responsible for the 
value of v
• Makes sense! The other ones 

aren’t likely detecting any 
patterns

𝑣 = max(𝑢1, 𝑢2)

𝑢1 𝑢2

40



Large Scale Visual Recognition Challenge

• About one million images, 1000 object categories in 
the training set

• Task: what is the object in the image
• I.e., classify the image into one of 1000 categories

• Evaluation: is one of the best 5 guesses correct?

41



42



Human Performance on ImageNet

• http://karpathy.github.io/2014/09/02/what-i-
learned-from-competing-against-a-convnet-on-
imagenet/

• 5.1% error (i.e., none of the 5 guesses the person 
makes are correct)

• Try it yourself!
• http://cs.stanford.edu/people/karpathy/ilsvrc/

43

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://cs.stanford.edu/people/karpathy/ilsvrc/


Dogs Are Hard to Classify!

44



AlexNet (Krizhevsky et al. 2012)

45



Aside: ConvNets vs. Monkeys

• Extract the features (neuron activities) from the 
Inferior Temporal Cortex of Rhesus Macaques when 
the monkeys are looking at images

• Extract features from the top layers of ConvNets
when the ConvNets are looking at images

• Use both sets of features to classify images

46



47



A Brute Force Approach

• Convolutional Networks architectures use 
knowledge about invariances to design the network 
architecture/weight constraints

• But it’s much simpler to incorporate knowledge of 
invariances by just creating extra training data:
• for each training image, produce new training data by 

applying all of the transformations we want to be 
insensitive to (Le Net can benefit from this too)

• Then train a large, dumb net on a fast computer.
• This works surprisingly well if the transformations are 

not too big

48



Deep Neural Networks as a Model 
of Computation
• Most people’s first instinct when they think about building an image 

• Classifier r is to write a complicated computer program

• A deep neural network is a computer program:

h1 = f1(x)

h2 = f2(h1)

h3 = f3(h2)

…

h9 = f9(h8)

• Can think of every layer of a neural network as one step of a parallel 
computation

• Features/templates are the functions that are applied to the previous layers

• Learning features  Learning what function to apply at step t of the algorithm

49



50

https://www.facebook.com/convolutionalmemes/photos/a.287833355004505.1073
741828.287764591678048/424941947960311/?type=3&theater


