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What Does a Neuron Do in a ConvNet? (1)

* A neuron in the first hidden layer computes a
weighted sum of pixels in a patch of the image for
which it is responsible

K. Fukushima, “Neurocognitron: A self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position” (Biol.
Cybernetics 1980)



What Does a Neuron Do in a ConvNet? (2)

* For Neurons in the first hidden layer, we can
visualize the weights.

Example weights for fully- Weights for 9 features in the
connected single-hidden layer | first convolutional layer of a

network for faces, for one layer for classifying ImageNet
neuron images

s: array([-0.0660211 , -0.02434859, -0.10672989, 0.00908299, 0.08226717,
o 0.02301903], dtype=float32)bias: 0.0126341
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Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”



What Does a Neuron Do in a ConvNet? (3)

* The neuron would be activated the most if the
input looks like the weight matrix

 These are called “Gabor-like filters”

* The colour is due to the input being 3D. We
visualize the strength of the weight going from each
of the R, G, and B components



What Does a Neuron Do in a ConvNet (4)

* Another to figuring out what kind of images active
the neuron: just try lots of images in a dataset, and
see which ones active the neuron the most

For each feature, fine the 9
images that produce the highest ,
activations for the neuron, and zele and ergus, “Visualing and Understaning
crop out the relevant patch




Aside: Relevant Patch?
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* Each neuron is affected by some small patch in the
layer below

e Can recursively figure out what patch in the input
layer each neuron is affected

* Neurons in the top layers are affected by (almost)
the entire image



This allows us to look at layers
besides the first one: layer 3
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Layer 4







Which Pixels in the Input Affect
the Neuron the Most?

* Rephrased: which pixels would make the neuron
not turn on if they had been different?

* In other words, for which inputs is
dneuron

large?
axi &



Assume that for the particular
image x, h, > hj
X,XZO =1lfh1<h2

relu(x) = {O ‘<0

- 0,0/w

ah3 _ ahg ahz 1, So >0
orelu, 0h,drelu,

ahg _ ahg areluz _ 1,52 > 0
ds, oOrelu, ds, | 0,0/w

6h3 . 6h3 652 . W(z)’sz >0
dx; 0s,0x3 | 0,0/w
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Typical Gradient of a Neuron

* Visualize the gradient of a particular neuron with respect to the
input x

* Do a forward pass:

* Compute the gradient of a particular neuron using backprop:
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Typical Gradient of a Neuron

* Mostly zero away from the object,
but the results are not very satisfying

* Every pixel influences the neuron via
multiple hidden neurons.
The network is trying to detect kittens everywhere,
and the same pixel could fit a kitten in one location
but not another, leading to its overall effect on the
kitten neuron to be O
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Typical Gradient of a Neuron

Dog ear
at (180, 320)

Pixel provides both
positive (via a cat eye
detection) and
negative (via absence
of cat eye detection)
evidence for a cat in
the image

14



Guided Backpropagation

* |ldea: neurons act like detectors of particular image
features

* We are only interested in what image features the
neuron detects, not in what kind of stuff it doesn’t
detect



Guided Backpropagation

OPm

* Instead of computing o DI Pm
only consider paths from x t t
to p,,, where the weights are softmax
positive and all the units are
positive (and greater than 0). O Zm Q Linear layer

Compute this modified

d
version of 22m Q h, Q Q ReLU layer
dx \
* Only consider evidence for O h. O Q ReLU layer
neurons being active, discard !

evidence for neurons having QD/
to be not active O O Q O




Guided Backpropagation:
Computation

* When performing the backward pass we already
, dneuron ,,

know " —75—" for every i
anbb) .
* If —=r5y <0, setitto 0
,Oneuron |, , oneuron ,,y, an(Ly) "
* Compute "— 5 " == Li ond  gp-1))
* Repeat

* If a path contains negative weights, it will be

ignored, sinc(el %a negative weight corresponds to a
dht

on(l=17))

negative



Guided Backpropagation
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Assume that for the particular
image x, h, > hj
X,XZO =1lfh1<h2

relu(x) = {0 <0

ah3 ahg ahz {1,52 >0

drelu, N dh, drelu, ~1 0,0/w

ahg . ahg aTEIuZ . 1,52 >0
ds, oOrelu, ds, | 0,0/w

set to O if negative

4

Ohy 0hsds, {W(Z),Sz >0

af3 _aSZ af3_ 0,0/W
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Guided Backpropagation
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Guided Backpropagation

guided backpropagation corresponding image crops

guided backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)
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What About Doing Gradient Ascent?

 Want to maximize the i-th output of the softmax

 Can compute the gradient of the i-th output of the
softmax with respect to the input x (the W’s and b’s are
fixed to make classification as good as possible)

* Perform gradient ascent on the input



Flamingo Pelican Hartebeest Billiard Table
Ground Beetle Indian Cobra Station Wagon Black Swan

Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)
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(A Small Tweak For the Gradient Descent Algorithm)

* Doing gradient ascent can lead to things that don’t
look like images at all, and yet maximize the output

* To keep images from looking like white noise, do
the following:
e Update the image x using a gradient ascent step
e Blur the image x

* In a Bayesian framework: higher prior probabilities
assigned to 2D arrays which look like they were blurred

* (There is no exact equivalence — but there are versions of this
where the equivalence can be made precise.)



