
Deep Neural Networks Optimization

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

Creative Commons (cc) by Akritasa

Slides from Geoffrey Hinton

http://arxiv.org/pdf/1406.2572.pdf



Gradient Descent for Neural 
Network

2

• Use backpropagation to efficiently compute 
𝜕𝐶

𝜕𝑾
for 

each layer



Why is training neural networks 
so hard?

• Hard to optimize:
• Not convex

• Local minima, saddle point, plateau,…

• Lots of parameters -- overfitting

• Can take a long time to train

3

Saddle Point

Plateau



Why is training neural networks 
so hard?

• Architecture choices:
• How many layers? How many units in each layer?

• What activation function to use?

• Choice of optimizer:
• We talked about gradient descent, but there are 

techniques that improves upon gradient descent

• Regularization?

• Initialization?

4



Contents:

• Optimizers:
• SGD, Momentum, adaptive learning rates

• Regularization:
• L1 & L2

• Dropout

• Activation Functions:
• sigmoid, tanh, ReLU

5



Gradient Descent

• Compute the cost 𝐶 𝒐, 𝒚 and gradients 
𝜕𝐶

𝜕𝑾
using the entire training set 
• If we have large amounts of data, this is very 

inefficient

• “Batch” gradient descent

• Stochastic Gradient Descent:
• Sample a minibatch of data from the training set

• Use the batch to estimate 
𝜕𝐶

𝜕𝑾

6



Stochastic Gradient Descent

7



Stochastic Gradient Descent (SGD)

• Terminology:

• minibatch: sample of training data used to estimate 
𝜕𝐶

𝜕𝑾
for a parameter update

• batch size: number of data points in a batch

• iteration: one parameter update 𝑾 ←𝑾− 𝛼
𝜕𝐶

𝜕𝑾

• epoch: one pass of the full training set

• SGD typically implemented by randomly shuffling the 
training data into batches at the start of each epoch

• Different epochs would have different batches

8



Choosing minibatch size

• If too large: 
• Training will be slow

• If batch size = size of training set, then we recover (non-
stochastic) gradient descent

• If too small:
• Gradients will be very noisy

• If batch size = 1, then we perform a parameter update for 
every item in the training set

• Typical minibatch sizes:
• 8, 16, 32, 64, 128

9



Choosing learning rate

• If too large: 
• Can hinder convergence

• If too small:
• Slow convergence

• Typically use a learning rate schedule:
• Reduce learning rate according to a pre-defined schedule

• E.g. cut learning rate by half every 10 epochs

• Reduce learning rate when objective stops improving
• E.g. when validation accuracy stops improving

10



Weakness of (vanilla) Gradient 
Descent

• SGD has trouble navigating areas where 
surface curves more steeply in one direction

11

𝑤1

𝑤2
Contour plot of cost with 
respect to two weights. 



Weakness of (vanilla) Gradient 
Descent

12



Why do cost functions have this 
shape?
• Suppose we have the following dataset for linear 

regression:

13

Cost surface 
would look 
like this.

Credit: Roger Grosse

• Need to move 𝑤1 by just a little 
bit, but need to move 𝑤2 by a lot



How to avoid the ravine problem

• For the input layer, we can center input
• For example, to zero mean and unit variance

• 𝑥(𝑖) ←
𝑥− ҧ𝑥

𝑆𝐷(𝑥)
, 𝑠𝑑 𝑥 =

1

𝑚−1
σ𝑖=1
𝑚 𝑥 𝑖 − ҧ𝑥 2

• What about hidden units?
• Difficult to avoid ravines in general

14



Momentum

Idea: if gradient consistently points toward 
one direction, go faster in that direction.
(like intertia in physics)

15

No momentum Momentum



Update rule for momentum

Parameter update rule for momentum:

𝒗 ← 𝛾𝒗 + 𝛼
𝜕𝐶

𝜕𝑾

𝑾 ←𝑾− 𝒗
Where
𝛾 is the momentum term (set to 0.9, 0.99, …)
𝛼 is the learning rate, like gradient descent 

16



Why momentum works

• Gradients of high curvature directions cancels 
out, so momentum dampens oscillation

• Gradient of low curvature directions 
accumulates, so momentum improves speed

• Momentum can help a lot, almost never hurts

17



Other Optimizers

• Why use same learning rate for all the 
weights?

• Adapt the learning rate to parameters
• This is the idea behind:

• Adagrad
• Adadelta
• RMSProp
• Adam

• Which is best? Depends on problem.

18



Optimizer comparison demo

• Alec Radford’s animations:
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

19

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html


Initialization

• How do we initialize weights?

• What if we initialize all to 0? (or a constant c?)
• All neurons will stay the same!

• Standard approach:
• Sample from a Gaussian

• How to choose variance?

• Xavier initialization: 𝜎2 =
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

• He initialization: 𝜎2 =
2

𝑛𝑖𝑛

20



Regularization

• Use L1 and L2 regularization as in regression

• Combination of L1 and L2 regularization also 
possible

• Dropout

21



Dropout

• During training, hidden units are set to 0 with 
probability (1 − 𝑝)

• When computing test outputs, scale all 
activations by the factor of 𝑝
• Keeps the scale of the output consistent, and gives 

the right output in expectation

22



Why does dropout prevent 
overfitting?

• Prevents dependence between units
• Each unit must be “useful” independent of other units

• We cannot learn a network that depends on complex 
activation patterns

23



Activation functions

• Choices:
• sigmoid, tanh, ReLU, …

• Recommendation: 
• don’t use sigmoid

• Try ReLU first, and then tanh

24



Sigmoid

• 𝜎 𝑡 = 1/(1 + exp −𝑡 )

• Disadvantages:
• 𝜎′(𝑡) is very small for t

outside of t ∈ [−5, 5]
• If that happens, the neuron

“dies”: the weights below the neuron won’t change, and so
the value of the neuron remains fixed (since any change to the 
weights is multiplied by 𝜎′(𝑡)

• 𝜎 𝑡 is always positive
• All the weights will either move in the positive direction or the 

negative direction during a given step of gradient descent

25



Tanh

• tanh 𝑡 =
1−exp(−2𝑡)

1+exp(−2𝑡)

• (=2𝜎 2𝑡 − 1)

• Not always positive
• No problem with all the weights having to move in the 

same direction

• Advantage over the sigmoid

26



ReLU

• Rectified Linear Unit

• 𝑓 𝑡 = max(0, 𝑡)

• Works well if you’re careful –
better than others (but needs
care!)

• Cheap to compute

• Dies if t is too small
• No gradient at all!

27



Learning Curves

• Split the data into a training set, validation set, and 
test set.

• Minimize the cost function on the training set, 
measure performance on all sets

• Plot the performance on the three sets vs. the 
number of optimization iterations performed
• Optimization iteration i:

𝜃𝑖+1 ← 𝜃𝑖 − 𝛼𝛻𝑐𝑜𝑠𝑡(𝜃, 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

28



“Typical” Learning Curves

max
(sometimes) slight 
decrease

300-unit hidden layer. 6 people, 80 examples each. Best test 
performance: 68%

29



Wikipedia version

test

train

epochsTest error minimized

(Basically a fairytale: the moral of the story is true, but things 
rarely look this nice)

30



Learning Curves

• The training performance always increases
• (Assuming the performance is closely enough related to 

the cost we’re optimizing – we sometimes also plot the 
cost directly)

• The test and validation curve should be the same, 
up to sampling error (i.e., variation due to the fact 
that the sets are small and sometimes things work 
better on one of them by chance)

• The training and validation performance sometimes 
initially increases and then decreases as we 
minimize the cost function

31



Overfitting and Learning Curves

• If performance decreases on the validation set but 
increases on the training set, that is an indication 
that we are overfitting
• Predicting outputs based on the peculiarities of the 

training set rather on the genuine patterns in the data

32


