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Non-Linear Decision Surfaces

* There is no linear decision boundary



Car Classification

Testing:

What is this?




You see this:

But the camera sees this:
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Learning
Algorithm

pixel 2 +
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= “Non”-Cars
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Learning
Algorithm

pixel 2
. 50 x 50 pixel images— 2500 pixels
oixel 2 - N + 4 n=2500 (7500 if RGB)
- + _ _

- £ pixel 1 intensity

- o pixel 2 intensity
- * o

- 7 - S pixel 2500 intensity
4+ Cars pixel 1 ~ Quadratic features (x; X x): =3 million

- “Non”-Cars features



Simple Non-Linear Classification Example
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Inspiration: The Brain
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Inspiration: The Brain
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Linear Neuron

Wo + W1 X1 + Wy X + W3X3

Linear
neuron




Linear Neuron: Cost Function

* Any number of choices. The one made for linear
regression is

(@ - whx®)°

e Can minimize this using gradient descent to obtain
the best weights w for the training set



Logistic Neuron

a(Wo + wix1 + WaXp + wax3),0(t) = 1+ exp(—t)




Logistic Neuron: Cost Function

* Could use the quadratic cost function again

* Could use the “log-loss” function to make the
neuron perform logistic regression

" .
, 1 . exp(—wTx®)
- O — |+ (1 —y®)l .
(Z Y Og(l + exp(—WTx(‘))> (1 =y*)log 1+ exp(—wTx®)

i=1

(Note: we derived this cost function by saying we want to
maximize the likelihood of the data under a certain model, but
there’s nothing stopping us from just making up a loss function)



Logistic Regression Cost Function: Another Look

—log(hy(x)),y =1
. log(l — hw(x)) , y =0

* If y = 1, want the cost to be small if h,, (x) is close
to 1 and large if h,, (x) is close to O
* -log(t) is O for t=1 and infinity fort =0

e If y = 0, want the cost to be small if h,,,(x) is close
to 0 and large if h,,(x) is close to 1 .
* Note:0 < o(t) <1 f

1 =
1+ exp(—t) /

e Cost(h, (x),y) = «

o(t) =




Multilayer Neural Networks

* hyj = g(W,;x)
= g(z Wi ikXk )
k

* xo = 1 always

* Wi j o is the “bias”

* g is the activation function
* Couldbe g(t) =t
* Could be g(t) = o(t)

* Nobody uses those
anymore...




Why do we need activation
functions?
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Activation functions?

Most commonly used activation functions:

1

o Sigmoid: 0(2) = o7

@ Tanh: tanh(z) = eexng)):xxggzg

® RelLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Sigmoid: f(z) = 1{1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(z)+exp(-2)]

RelLU: f(z) = max(0, 2)




Exercise:

* Hand code a neural network to compute:
* AND
* XOR

e Use only sigmoid
* Use only RelLU activations



Multilayer Neural Network:

)

Speech Recognition Example

(multi-class classification
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Universal Approximator

* Neural networks with at least one hidden layer (and
enough neurons) are universal approximators

e Can represent any (smooth) function

* The capacity (ability to represent different
functions) increases with more hidden layers and
more neurons

* Why go deeper? One hidden layer might need a /ot
of neurons. Deeper and narrower networks are
more compact 4 -



Computation in Neural Networks

* Forward pass
* Making predictions
* Plugin the input x, get the outputy

* Backward pass

 Compute the gradient of the cost function with respect
to the weights



Multilayer Neural Network for
Classification:

o0; is large if the
probability that the
correct class is i is high

outputs

hidden
« | layer

A possible cost function: _
<«=m |INpUt vector (X)

C(o,y) = Z ly® — o®)2

y®)’s and o(l) S encoded using
one-hot encoding
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Forward Pass (vectorized)

T
0=4g (W(Z)) h+b® output units
h=g((WD) x+p®
g ( ) O T hidden units

...etc... if there are more layers @ ® @ inputunits
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Backwards Pass (training)

Need to find

m
W = argminz loss(oM, y())
=

Where:
e 0 s the output of the neural network

. y(i) is the ground truth
* ¥ is all the weights in the neural network
* [oss is a continuous loss function.

Use gradient descent to find a good W




But how to compute gradient?

* To optimize the weights / parameters o the neural
network, we need to compute gradient of the cost
function:

C(o,y) = X2, loss(0®,y )
with respect to every weight in the neural network.

* Need to compute, for every layer and weight [, j, i :

aw (LD
* How to do this? How to do this efficiently?



Review: Chain Rule

e Univariate Chain Rule

d
Eg(f(t)) =

 Multivariate Chain Rule

99 _ 99 97
0x df; 0x

dg df

df dt
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Gradient of Single Weight (last layer)

. Wed rteed the partial derivatives of the cost function C (o0, y) w.r.t all the W
and b.

° Oi — g(zj W(z']'l)h] + b(ZJ))
o letz; = ;W@ + p@J) so that o; = g(z;)

« Partial derivative of C(o,y) with respect to W (2J:9) 3]] evaluated at
(x,y,W,b,h, o)

aW(Z'j'i) _ aW(ZJ;l) aol

__0z_dg0c
— aw@iD az; do;

ag oc
2 O
J aZiaOi

L0
= h;g'(z;) 35, C(0,Y)
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Gradient of Single Weight (last layer)

* For example, if we use:
e sigmoid activation g = 0,0’ (t) = a(t)(l — a(t))
« MSE loss: C(0,y) = Y, (0; — y;)?

 Then
aCc dC

ow@iD jgl(zi)a_oi
= J'g(Zi)(l — g(Zi))Z(Oi — Vi)
= hjo;(1 - 0)2(0; — ¥1)




Vectorization

* For a single weight, we had:

aC
gD — ol —0)2(0; — i)

* Vectorizing, we get

dC
O 2h - (0.(1—0).(0 — y))T

» Note this is for sigmoid activation, square loss




What about earlier layers?

‘ outputs
hidden

| layer

Use multivariate chain rule:

aC aC doy,

2NV & Input vector (X)
ahi - aOk hi

oc  9C Ok
oW LJD — 9h; oW (LD
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Backpropagation

G OUtpUtS

hidA
hidden
lavers
hidB y
ac dC dhidA,

ohidB; 4 Ghida, anias,

oC  9C 0hidB;
oW @i — dhidB; oW (LID
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Compare outputs with
Back-propagate correct answer to get

error signal to error signal

get derivatives
for learning <« Outputs
hidden
layers
<= iNput vector
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Tralning Summary

&

(Training neural nets:

Loop until convergence:

» for each example n

2
S.

Given input x\™ , propagate activity forward (x(”) — h{™ — o(")
(forward pass)

Propagate gradients backward (backward pass)

Update each weight (via gradient descent)

34




Why is training neural networks
so hard?

* Hard to optimize:

* Not convex
* Local minima, saddle points, etc...
* Can take a long time to train

e Architecture choices:

* How many layers? How many units in each layer?
* What activation function to use?

* Choice of optimizer:

* We talked about gradient descent, but there are
techniques that improves upon gradient descent



Demo

http://playground.tensorflow.org/



