Artificial Neural Networks: Intro

"Making Connections" by Filomena Booth (2013)

Slides from Andrew Ng, Geoffrey Hinton, and Tom Mitchell CSC411: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa₁Zhang

Non-Linear Decision Surfaces

• There is no linear decision boundary

Car Classification

What is this?

You see this:

	But	the	cam	nera	see	s thi	s:							
	194	210	201	212	199	213	215	195	178	158	182	209		
	180	189	190	221	209	205	191	167	147	115	129	163		
	114	126	140	188	176	165	152	140	170	106	78	88		
۱	87	103	115	154	143	142	149	153	173	101	57	57		
\	102	112	106	131	122	138	152	147	128	84	58	66		
i -	94	95	79	104	105	124	129	113	107	87	69	67		
	68	71	69	98	89	92	98	95	89	88	76	67		
N	41	56	68	99	63	45	60	82	58	76	75	65		
· ``	20	43	69	75	56	41	51	73	55	70	63	44		
1	50	50	57	69	75	75	73	74	53	68	59	37		
``	72	59	53	66	84	92	84	74	57	72	63	42		
	67	61	58	65	75	78	76	73	59	75	69	50		

Simple Non-Linear Classification Example

 $x_1 \ x_2$

Inspiration: The Brain

Inspiration: The Brain

Linear Neuron

Linear Neuron: Cost Function

• Any number of choices. The one made for linear regression is

$$\sum_{i=1}^{m} (y^{(i)} - w^T x^{(i)})^2$$

 Can minimize this using gradient descent to obtain the best weights w for the training set

Logistic Neuron

Logistic Neuron: Cost Function

- Could use the quadratic cost function again
- Could use the "log-loss" function to make the neuron perform logistic regression

$$-\left(\sum_{i=1}^{m} y^{(i)} \log\left(\frac{1}{1 + \exp(-w^{T} x^{(i)})}\right) + (1 - y^{(i)}) \log\left(\frac{\exp(-w^{T} x^{(i)})}{1 + \exp(-w^{T} x^{(i)})}\right)\right)$$

(Note: we derived this cost function by saying we want to maximize the likelihood of the data under a certain model, but there's nothing stopping us from just making up a loss function) Logistic Regression Cost Function: Another Look

•
$$Cost(h_w(x), y) = \begin{cases} -\log(h_w(x)), y = 1 \\ -\log(1 - h_w(x)), y = 0 \end{cases}$$

• If y = 1, want the cost to be small if $h_w(x)$ is close to 1 and large if $h_w(x)$ is close to 0

-log(t) is 0 for t=1 and infinity for t = 0

- If y = 0, want the cost to be small if $h_w(x)$ is close to 0 and large if $h_w(x)$ is close to 1
- Note: $0 < \sigma(t) < 1$

$$\sigma(t) = \frac{1}{1 + \exp(-t)}$$

Multilayer Neural Networks

•
$$h_{i,j} = g(W_{i,j}x)$$

= $g(\sum_{k} W_{i,j,k}x_{k})$

- $x_0 = 1$ always
- $W_{i,j,0}$ is the "bias"
- g is the activation function
 - Could be g(t) = t
 - Could be $g(t) = \sigma(t)$
 - Nobody uses those anymore...

Why do we need activation functions?

Activation functions?

Most commonly used activation functions:

• Sigmoid:
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• Tanh:
$$tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$$

• ReLU (Rectified Linear Unit): $\operatorname{ReLU}(z) = \max(0, z)$

Exercise:

- Hand code a neural network to compute:
 - AND
 - XOR

- Use *only* sigmoid
- Use *only* ReLU activations

Multilayer Neural Network: Speech Recognition Example (multi-class classification)

Universal Approximator

- Neural networks with at least one hidden layer (and enough neurons) are *universal approximators*
 - Can represent any (smooth) function
- The *capacity* (ability to represent different functions) increases with more hidden layers and more neurons
- Why go deeper? One hidden layer might need *a lot* of neurons. Deeper and narrower networks are ^{3 hidden neurons} ^{6 hidden neurons} ^{20 hidden neurons}

Computation in Neural Networks

- Forward pass
 - Making predictions
 - Plug in the input x, get the output y
- Backward pass
 - Compute the gradient of the cost function with respect to the weights

Multilayer Neural Network for Classification:

Forward Pass (vectorized)

$$\mathbf{o} = g\left(\left(W^{(2)} \right)^T \boldsymbol{h} + b^{(2)} \right)$$
$$\mathbf{h} = g\left(\left(W^{(1)} \right)^T \boldsymbol{x} + b^{(1)} \right)$$

...etc... if there are more layers

Backwards Pass (training)

Need to find

$$W = \underset{W}{\operatorname{argmin}} \sum_{i=1}^{m} loss(\boldsymbol{o}^{(i)}, \boldsymbol{y}^{(i)})$$

Where:

- $o^{(i)}$ is the output of the neural network
- $y^{(i)}$ is the ground truth
- W is all the weights in the neural network
- *loss* is a continuous loss function.

Use **gradient descent** to find a good W

But how to compute gradient?

 To optimize the weights / parameters o the neural network, we need to compute gradient of the cost function:

 $C(\mathbf{o}, \mathbf{y}) = \sum_{i=1}^{m} loss(\mathbf{o}^{(i)}, \mathbf{y}^{(i)})$ with respect to every weight in the neural network.

• Need to compute, for every layer and weight l, j, i: $\frac{\partial C}{\partial C}$

 $\overline{\partial W^{(l,j,i)}}$

• How to do this? How to do this **efficiently**?

Review: Chain Rule

- Univariate Chain Rule $\frac{d}{dt}g(f(t)) = \frac{dg}{df} \cdot \frac{df}{dt}$
- Multivariate Chain Rule

Gradient of Single Weight (last layer)

- We need the partial derivatives of the cost function C(o, y) w.r.t all the W and b.
- $o_i = g(\sum_j W^{(2,j,i)}h_j + b^{(2,j)})$
- Let $z_i = \sum_j W^{(2,j,i)} h_j + b^{(2,j)}$ so that $o_i = g(z_i)$
- Partial derivative of C(o, y) with respect to W^(2,j,i) all evaluated at (x, y, W, b, h, o)

$$\frac{\partial C}{\partial W^{(2,j,i)}} = \frac{\partial o_i}{\partial W^{(2,j,i)}} \frac{\partial C}{\partial o_i}$$
$$= \frac{\partial z_i}{\partial W^{(2,j,i)}} \frac{\partial g}{\partial z_i} \frac{\partial C}{\partial o_i}$$
$$= h_j \frac{\partial g}{\partial z_i} \frac{\partial C}{\partial o_i}$$
$$= h_j g'(z_i) \frac{\partial}{\partial o_i} C(o, y)$$

Gradient of Single Weight (last layer)

- For example, if we use:
 - sigmoid activation $g = \sigma, \sigma'(t) = \sigma(t)(1 \sigma(t))$
 - MSE loss: $C(o, y) = \sum_{i=1}^{N} (o_i y_i)^2$
- Then

$$\frac{\partial C}{\partial W^{(2,j,i)}} = h_j g'(z_i) \frac{\partial C}{\partial o_i}$$
$$= h_j g(z_i) (1 - g(z_i)) 2(o_i - y_i)$$
$$= h_j o_i (1 - o_i) 2(o_i - y_i)$$

Vectorization

• For a single weight, we had:

$$\frac{\partial C}{\partial W^{(2,j,i)}} = h_j o_i (1 - o_i) 2(o_i - y_i)$$

• Vectorizing, we get

$$\frac{\partial C}{\partial W^{(2)}} = 2\boldsymbol{h} \cdot (\boldsymbol{o}.(1-\boldsymbol{o}).(\boldsymbol{o}-\boldsymbol{y}))^T$$

• Note this is for sigmoid activation, square loss

What about earlier layers?

Use multivariate chain rule:

$$\frac{\partial C}{\partial h_i} = \sum_k \left(\frac{\partial C}{\partial o_k} \frac{\partial o_k}{h_i}\right)$$
$$\frac{\partial C}{\partial c} \frac{\partial C}{\partial h_i} \frac{\partial h_i}{\partial h_i}$$

 $\frac{\partial W^{(1,j,i)}}{\partial W^{(1,j,i)}} \equiv \frac{\partial h_i}{\partial h_i} \frac{\partial W^{(1,j,i)}}{\partial W^{(1,j,i)}}$

Back-propagate error signal to get derivatives for learning

Training Summary

Training neural nets:

Loop until convergence:

- ▶ for each example *n*
 - 1. Given input $\mathbf{x}^{(n)}$, propagate activity forward $(\mathbf{x}^{(n)} \rightarrow \mathbf{h}^{(n)} \rightarrow o^{(n)})$ (forward pass)
 - 2. Propagate gradients backward (backward pass)
 - 3. Update each weight (via gradient descent)

Why is training neural networks so hard?

- Hard to optimize:
 - Not convex
 - Local minima, saddle points, etc...
 - Can take a long time to train
- Architecture choices:
 - How many layers? How many units in each layer?
 - What activation function to use?
- Choice of optimizer:
 - We talked about gradient descent, but there are techniques that improves upon gradient descent

Demo

http://playground.tensorflow.org/