
Artificial Neural Networks: Intro

CSC411: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

“Making Connections” by Filomena Booth (2013)

Slides from Andrew Ng, Geoffrey 
Hinton, and Tom Mitchell

1



Non-Linear Decision Surfaces

x1

x2

• There is no linear decision boundary 

2



Car Classification

Testing:

What is this?  

Not a carCars

3



You see this: 

But the camera sees this:

4



Learning 
Algorithm

pixel 1

pixel 2

pixel 1

pixel 2

Raw image

Cars
“Non”-Cars



pixel 1

pixel 2

Raw image

Cars
“Non”-Cars

Learning 
Algorithm

pixel 1

pixel 2



pixel 1

pixel 2

Raw image

Cars
“Non”-Cars

50 x 50 pixel images→ 2500 pixels
(7500 if RGB)

pixel 1 intensity

pixel 2 intensity

pixel 2500 intensity

Quadratic features (               ): ≈3 million
features

Learning 
Algorithm

pixel 1

pixel 2



Simple Non-Linear Classification Example

x1

x2

x1

x2

8



Inspiration: The Brain

9



Inspiration: The Brain

10



Linear Neuron

𝑤1 𝑤2 𝑤3

Linear 
neuron

𝑤0

𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

𝑥1 𝑥2 𝑥3

11



Linear Neuron: Cost Function

• Any number of choices. The one made for linear 
regression is

σ𝑖=1
𝑚 𝑦 𝑖 − 𝑤𝑇𝑥(𝑖)

2

• Can minimize this using gradient descent to obtain 
the best weights w for the training set

12



Logistic Neuron

𝑤1 𝑤2 𝑤3

𝑤0

𝜎(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥3), 𝜎 𝑡 =
1

1 + exp(−𝑡)

𝑥1 𝑥2 𝑥3

13



Logistic Neuron: Cost Function

• Could use the quadratic cost function again

• Could use the “log-loss” function to make the 
neuron perform logistic regression

− 

𝑖=1

𝑚

𝑦 𝑖 log
1

1 + exp −𝑤𝑇𝑥 𝑖
+ (1 − 𝑦 𝑖 ) log

exp −𝑤𝑇𝑥 𝑖

1 + exp −𝑤𝑇𝑥 𝑖

(Note: we derived this cost function by saying we want to 
maximize the likelihood of the data under a certain model, but 
there’s nothing stopping us from just making up a loss function)

14



Logistic Regression Cost Function: Another Look 

• 𝐶𝑜𝑠𝑡 ℎ𝑤 𝑥 , 𝑦 = ቐ
− log ℎ𝑤 𝑥 , 𝑦 = 1

− log 1 − ℎ𝑤 𝑥 , 𝑦 = 0

• If y = 1, want the cost to be small if ℎ𝑤 𝑥 is close 
to 1 and large if ℎ𝑤 𝑥 is close to 0
• -log(t) is 0 for t=1 and infinity for t = 0

• If y = 0, want the cost to be small if ℎ𝑤 𝑥 is close 
to 0 and large if ℎ𝑤 𝑥 is close to 1

• Note:0 < 𝜎 𝑡 < 1

𝜎 𝑡 =
1

1 + exp(−𝑡)
15



Multilayer Neural Networks

• ℎ𝑖,𝑗 = g W𝑖,𝑗𝑥

= 𝑔(

𝑘

𝑊𝑖,𝑗,𝑘𝑥𝑘 )

• 𝑥0 = 1 always

• 𝑊𝑖,𝑗,0 is the “bias”

• g is the activation function
• Could be 𝑔 𝑡 = 𝑡
• Could be 𝑔 𝑡 = 𝜎 𝑡

• Nobody uses those 
anymore…

output units

input units

hidden units

𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2

16



Why do we need activation 
functions?

17



Activation functions?

18



Exercise:

• Hand code a neural network to compute:
• AND

• XOR

• Use only sigmoid 

• Use only ReLU activations

19



Multilayer Neural Network: 
Speech Recognition Example 
(multi-class classification)

20



Universal Approximator

• Neural networks with at least one hidden layer (and 
enough neurons) are universal approximators
• Can represent any (smooth) function

• The capacity (ability to represent different 
functions) increases with more hidden layers and 
more neurons

• Why go deeper? One hidden layer might need a lot
of neurons. Deeper and narrower networks are 
more compact

21



Computation in Neural Networks

• Forward pass
• Making predictions

• Plug in the input x, get the output y

• Backward pass
• Compute the gradient of the cost function with respect 

to the weights

22



Multilayer Neural Network for 
Classification:

input vector (x)

hidden 

layer

outputs
𝑜1

𝑜𝑖 is large if the 
probability that the 
correct class is i is high 

𝑜2 𝑜3

A possible cost function:

𝐶 𝑜, 𝑦 =

𝑖=1

𝑚

|𝑦 𝑖 − 𝑜 𝑖 |2

𝑦(𝑖)’s and 𝑜(𝑖)’s  encoded using 
one-hot encoding

ℎ1 ℎ3

𝑥1

𝑊(1,1,1)

𝑊(2,1,1)
𝑊(2,3,3)

𝑊(1,3,5)

ℎ5

23



Forward Pass (vectorized)

𝐨 = 𝑔 𝑊(2) 𝑇
𝒉 + 𝑏(2)

𝐡 = 𝑔 𝑊(1) 𝑇
𝒙 + 𝑏(1)

…etc... if there are more layers

output units

input units

hidden units

𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2

24



Backwards Pass (training)

Need to find 

𝑊 = argmin
𝑊



𝑖=1

𝑚

𝑙𝑜𝑠𝑠(𝒐 𝑖 , 𝒚 𝑖 )

Where:
• 𝒐 𝑖 is the output of the neural network
• 𝒚 𝑖 is the ground truth
• 𝑊 is all the weights in the neural network
• 𝑙𝑜𝑠𝑠 is a continuous loss function.

Use gradient descent to find a good 𝑊



But how to compute gradient?

• To optimize the weights / parameters o the neural 
network, we need to compute gradient of the cost 
function: 
𝐶 𝐨, 𝐲 = σ𝑖=1

𝑚 𝑙𝑜𝑠𝑠(𝒐 𝑖 , 𝒚 𝑖 )
with respect to every weight in the neural network.

• Need to compute, for every layer and weight 𝑙, 𝑗, 𝑖 :
𝜕𝐶

𝜕𝑊 𝑙,𝑗,𝑖

• How to do this? How to do this efficiently?

26



Review: Chain Rule

• Univariate Chain Rule
𝑑

𝑑𝑡
𝑔 𝑓 𝑡 =

𝑑𝑔

𝑑𝑓
.
𝑑𝑓

𝑑𝑡

• Multivariate Chain Rule
𝜕𝑔

𝜕𝑥
= σ

𝜕𝑔

𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝑥

27

𝑓1(𝑥) 𝑓2(𝑥)

𝑥

𝑓3(𝑥)

𝑔(𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 )



Gradient of Single Weight (last layer)

• We need the partial derivatives of  the cost function 𝐶 𝑜, 𝑦 w.r.t all the W 
and b . 

• 𝑜𝑖 = 𝑔 σ𝑗𝑊
2,𝑗,𝑖 ℎ𝑗 + 𝑏(2,𝑗)

• Let 𝑧𝑖 = σ𝑗𝑊
2,𝑗,𝑖 ℎ𝑗 + 𝑏 2,𝑗 so that 𝑜𝑖 = 𝑔 𝑧𝑖

• Partial derivative of 𝐶 𝑜, 𝑦 with respect to 𝑊 2,𝑗,𝑖 all evaluated at 
(𝑥, 𝑦,𝑊, 𝑏, ℎ, 𝑜)

𝜕𝐶

𝜕𝑊 2,𝑗,𝑖 =
𝜕𝑜𝑖

𝜕𝑊 2,𝑗,𝑖

𝜕𝐶

𝜕𝑜𝑖

=
𝜕𝑧𝑖

𝜕𝑊 2,𝑗,𝑖

𝜕𝑔

𝜕𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗
𝜕𝑔

𝜕𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗𝑔
′ 𝑧𝑖

𝜕

𝜕𝑜𝑖
𝐶(𝑜, 𝑦)

28

𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2

C

𝑊(2,2,1)



Gradient of Single Weight (last layer)

• For example, if we use:
• sigmoid activation 𝑔 = 𝜎, 𝜎′ 𝑡 = 𝜎 𝑡 1 − 𝜎 𝑡

• MSE loss: 𝐶 𝒐, 𝒚 = σ𝑖=1
𝑁 𝑜𝑖 − 𝑦𝑖

2

• Then
𝜕𝐶

𝜕𝑊 2,𝑗,𝑖 = ℎ𝑗𝑔
′ 𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗𝑔 𝑧𝑖 1 − 𝑔 𝑧𝑖 2 𝑜𝑖 − 𝑦𝑖
= ℎ𝑗𝑜𝑖 1 − 𝑜𝑖 2(𝑜𝑖 − 𝑦𝑖)

29



Vectorization

• For a single weight, we had:

𝜕𝐶

𝜕𝑊 2,𝑗,𝑖
= ℎ𝑗𝑜𝑖 1 − 𝑜𝑖 2(𝑜𝑖 − 𝑦𝑖)

• Vectorizing, we get

𝜕𝐶

𝜕𝑾 𝟐
= 2𝒉 ⋅ 𝒐. 1 − 𝒐 . 𝒐 − 𝒚

𝑇

• Note this is for sigmoid activation, square loss

30



What about earlier layers?

input vector (x)

hidden 

layer

outputs
𝑜1 𝑜2 𝑜3

ℎ1 ℎ3

𝑥1

𝑊(1,1,1)

𝑊(2,1,1)
𝑊(2,3,3)

𝑊(1,3,5)

ℎ5

Use multivariate chain rule:

𝜕𝐶

𝜕ℎ𝑖
=

𝑘

(
𝜕𝐶

𝜕𝑜𝑘

𝜕𝑜𝑘
ℎ𝑖

)

𝜕𝐶

𝜕𝑊(1,𝑗,𝑖)
=

𝜕𝐶

𝜕ℎ𝑖

𝜕ℎ𝑖
𝜕𝑊(1,𝑗,𝑖)

31



Backpropagation

hidden 

layers

outputs

hidB

hidA

𝑊(1,3,5)

𝜕𝐶

𝜕ℎ𝑖𝑑𝐵𝑖
=

𝑘

(
𝜕𝐶

𝜕ℎ𝑖𝑑𝐴𝑘

𝜕ℎ𝑖𝑑𝐴𝑘
𝜕ℎ𝑖𝑑𝐵𝑖

)

𝜕𝐶

𝜕𝑊(1,𝑗,𝑖)
=

𝜕𝐶

𝜕ℎ𝑖𝑑𝐵𝑖

𝜕ℎ𝑖𝑑𝐵𝑖
𝜕𝑊(1,𝑗,𝑖)

32



input vector

hidden 

layers

outputs

Back-propagate                

error signal to 

get derivatives 

for learning

Compare outputs with 

correct answer to get 

error signal

33



Training Summary

34



Why is training neural networks 
so hard?

• Hard to optimize:
• Not convex

• Local minima, saddle points, etc…

• Can take a long time to train

• Architecture choices:
• How many layers? How many units in each layer?

• What activation function to use?

• Choice of optimizer:
• We talked about gradient descent, but there are 

techniques that improves upon gradient descent

35



Demo

http://playground.tensorflow.org/

36


