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Non-Linear Decision Surfaces

x1

x2

• There is no linear decision boundary 
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Car Classification

Testing:

What is this?  

Not a carCars
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You see this: 

But the camera sees this:
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Learning 
Algorithm
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pixel 1

pixel 2

Raw image

Cars
“Non”-Cars

50 x 50 pixel images→ 2500 pixels
(7500 if RGB)

pixel 1 intensity

pixel 2 intensity

pixel 2500 intensity

Quadratic features (               ): ≈3 million
features

Learning 
Algorithm

pixel 1

pixel 2



Simple Non-Linear Classification Example

x1

x2

x1

x2
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Inspiration: The Brain
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Inspiration: The Brain
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Linear Neuron

𝑤1 𝑤2 𝑤3

Linear 
neuron

𝑤0

𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

𝑥1 𝑥2 𝑥3
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Linear Neuron: Cost Function

• Any number of choices. The one made for linear 
regression is

σ𝑖=1
𝑚 𝑦 𝑖 − 𝑤𝑇𝑥(𝑖)

2

• Can minimize this using gradient descent to obtain 
the best weights w for the training set
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Logistic Neuron

𝑤1 𝑤2 𝑤3

𝑤0

𝜎(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥3), 𝜎 𝑡 =
1

1 + exp(−𝑡)

𝑥1 𝑥2 𝑥3
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Logistic Neuron: Cost Function

• Could use the quadratic cost function again

• Could use the “log-loss” function to make the 
neuron perform logistic regression

− 

𝑖=1

𝑚

𝑦 𝑖 log
1

1 + exp −𝑤𝑇𝑥 𝑖
+ (1 − 𝑦 𝑖 ) log

exp −𝑤𝑇𝑥 𝑖

1 + exp −𝑤𝑇𝑥 𝑖

(Note: we derived this cost function by saying we want to 
maximize the likelihood of the data under a certain model, but 
there’s nothing stopping us from just making up a loss function)
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Logistic Regression Cost Function: Another Look 

• 𝐶𝑜𝑠𝑡 ℎ𝑤 𝑥 , 𝑦 = ቐ
− log ℎ𝑤 𝑥 , 𝑦 = 1

− log 1 − ℎ𝑤 𝑥 , 𝑦 = 0

• If y = 1, want the cost to be small if ℎ𝑤 𝑥 is close 
to 1 and large if ℎ𝑤 𝑥 is close to 0
• -log(t) is 0 for t=1 and infinity for t = 0

• If y = 0, want the cost to be small if ℎ𝑤 𝑥 is close 
to 0 and large if ℎ𝑤 𝑥 is close to 1

• Note:0 < 𝜎 𝑡 < 1

𝜎 𝑡 =
1

1 + exp(−𝑡)
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Multilayer Neural Networks

• ℎ𝑖,𝑗 = g W𝑖,𝑗𝑥

= 𝑔(

𝑘

𝑊𝑖,𝑗,𝑘𝑥𝑘 )

• 𝑥0 = 1 always

• 𝑊𝑖,𝑗,0 is the “bias”

• g is the activation function
• Could be 𝑔 𝑡 = 𝑡
• Could be 𝑔 𝑡 = 𝜎 𝑡

• Nobody uses those 
anymore…

output units

input units

hidden units

𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2
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Why do we need activation 
functions?
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Activation functions?
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Exercise:

• Hand code a neural network to compute:
• AND

• XOR

• Use only sigmoid 

• Use only ReLU activations
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Multilayer Neural Network: 
Speech Recognition Example 
(multi-class classification)
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Universal Approximator

• Neural networks with at least one hidden layer (and 
enough neurons) are universal approximators
• Can represent any (smooth) function

• The capacity (ability to represent different 
functions) increases with more hidden layers and 
more neurons

• Why go deeper? One hidden layer might need a lot
of neurons. Deeper and narrower networks are 
more compact
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Computation in Neural Networks

• Forward pass
• Making predictions

• Plug in the input x, get the output y

• Backward pass
• Compute the gradient of the cost function with respect 

to the weights
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Multilayer Neural Network for 
Classification:

input vector (x)

hidden 

layer

outputs
𝑜1

𝑜𝑖 is large if the 
probability that the 
correct class is i is high 

𝑜2 𝑜3

A possible cost function:

𝐶 𝑜, 𝑦 =

𝑖=1

𝑚

|𝑦 𝑖 − 𝑜 𝑖 |2

𝑦(𝑖)’s and 𝑜(𝑖)’s  encoded using 
one-hot encoding

ℎ1 ℎ3

𝑥1

𝑊(1,1,1)

𝑊(2,1,1)
𝑊(2,3,3)

𝑊(1,3,5)

ℎ5
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Forward Pass (vectorized)

𝐨 = 𝑔 𝑊(2) 𝑇
𝒉 + 𝑏(2)

𝐡 = 𝑔 𝑊(1) 𝑇
𝒙 + 𝑏(1)

…etc... if there are more layers

output units

input units

hidden units

𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2
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Backwards Pass (training)

Need to find 

𝑊 = argmin
𝑊



𝑖=1

𝑚

𝑙𝑜𝑠𝑠(𝒐 𝑖 , 𝒚 𝑖 )

Where:
• 𝒐 𝑖 is the output of the neural network
• 𝒚 𝑖 is the ground truth
• 𝑊 is all the weights in the neural network
• 𝑙𝑜𝑠𝑠 is a continuous loss function.

Use gradient descent to find a good 𝑊



But how to compute gradient?

• To optimize the weights / parameters o the neural 
network, we need to compute gradient of the cost 
function: 
𝐶 𝐨, 𝐲 = σ𝑖=1

𝑚 𝑙𝑜𝑠𝑠(𝒐 𝑖 , 𝒚 𝑖 )
with respect to every weight in the neural network.

• Need to compute, for every layer and weight 𝑙, 𝑗, 𝑖 :
𝜕𝐶

𝜕𝑊 𝑙,𝑗,𝑖

• How to do this? How to do this efficiently?
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Review: Chain Rule

• Univariate Chain Rule
𝑑

𝑑𝑡
𝑔 𝑓 𝑡 =

𝑑𝑔

𝑑𝑓
.
𝑑𝑓

𝑑𝑡

• Multivariate Chain Rule
𝜕𝑔

𝜕𝑥
= σ

𝜕𝑔

𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝑥
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𝑓1(𝑥) 𝑓2(𝑥)

𝑥

𝑓3(𝑥)

𝑔(𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 )



Gradient of Single Weight (last layer)

• We need the partial derivatives of  the cost function 𝐶 𝑜, 𝑦 w.r.t all the W 
and b . 

• 𝑜𝑖 = 𝑔 σ𝑗𝑊
2,𝑗,𝑖 ℎ𝑗 + 𝑏(2,𝑗)

• Let 𝑧𝑖 = σ𝑗𝑊
2,𝑗,𝑖 ℎ𝑗 + 𝑏 2,𝑗 so that 𝑜𝑖 = 𝑔 𝑧𝑖

• Partial derivative of 𝐶 𝑜, 𝑦 with respect to 𝑊 2,𝑗,𝑖 all evaluated at 
(𝑥, 𝑦,𝑊, 𝑏, ℎ, 𝑜)

𝜕𝐶

𝜕𝑊 2,𝑗,𝑖 =
𝜕𝑜𝑖

𝜕𝑊 2,𝑗,𝑖

𝜕𝐶

𝜕𝑜𝑖

=
𝜕𝑧𝑖

𝜕𝑊 2,𝑗,𝑖

𝜕𝑔

𝜕𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗
𝜕𝑔

𝜕𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗𝑔
′ 𝑧𝑖

𝜕

𝜕𝑜𝑖
𝐶(𝑜, 𝑦)
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𝑥1

ℎ𝑖,𝑗

𝑥2 𝑥3

𝑜1 𝑜2

C

𝑊(2,2,1)



Gradient of Single Weight (last layer)

• For example, if we use:
• sigmoid activation 𝑔 = 𝜎, 𝜎′ 𝑡 = 𝜎 𝑡 1 − 𝜎 𝑡

• MSE loss: 𝐶 𝒐, 𝒚 = σ𝑖=1
𝑁 𝑜𝑖 − 𝑦𝑖

2

• Then
𝜕𝐶

𝜕𝑊 2,𝑗,𝑖 = ℎ𝑗𝑔
′ 𝑧𝑖

𝜕𝐶

𝜕𝑜𝑖

= ℎ𝑗𝑔 𝑧𝑖 1 − 𝑔 𝑧𝑖 2 𝑜𝑖 − 𝑦𝑖
= ℎ𝑗𝑜𝑖 1 − 𝑜𝑖 2(𝑜𝑖 − 𝑦𝑖)
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Vectorization

• For a single weight, we had:

𝜕𝐶

𝜕𝑊 2,𝑗,𝑖
= ℎ𝑗𝑜𝑖 1 − 𝑜𝑖 2(𝑜𝑖 − 𝑦𝑖)

• Vectorizing, we get

𝜕𝐶

𝜕𝑾 𝟐
= 2𝒉 ⋅ 𝒐. 1 − 𝒐 . 𝒐 − 𝒚

𝑇

• Note this is for sigmoid activation, square loss
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What about earlier layers?

input vector (x)

hidden 

layer

outputs
𝑜1 𝑜2 𝑜3

ℎ1 ℎ3

𝑥1

𝑊(1,1,1)

𝑊(2,1,1)
𝑊(2,3,3)

𝑊(1,3,5)

ℎ5

Use multivariate chain rule:

𝜕𝐶

𝜕ℎ𝑖
=

𝑘

(
𝜕𝐶

𝜕𝑜𝑘

𝜕𝑜𝑘
ℎ𝑖

)

𝜕𝐶

𝜕𝑊(1,𝑗,𝑖)
=

𝜕𝐶

𝜕ℎ𝑖

𝜕ℎ𝑖
𝜕𝑊(1,𝑗,𝑖)
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Backpropagation

hidden 

layers

outputs

hidB

hidA

𝑊(1,3,5)

𝜕𝐶

𝜕ℎ𝑖𝑑𝐵𝑖
=

𝑘

(
𝜕𝐶

𝜕ℎ𝑖𝑑𝐴𝑘

𝜕ℎ𝑖𝑑𝐴𝑘
𝜕ℎ𝑖𝑑𝐵𝑖

)

𝜕𝐶

𝜕𝑊(1,𝑗,𝑖)
=

𝜕𝐶

𝜕ℎ𝑖𝑑𝐵𝑖

𝜕ℎ𝑖𝑑𝐵𝑖
𝜕𝑊(1,𝑗,𝑖)
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input vector

hidden 

layers

outputs

Back-propagate                

error signal to 

get derivatives 

for learning

Compare outputs with 

correct answer to get 

error signal
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Training Summary
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Why is training neural networks 
so hard?

• Hard to optimize:
• Not convex

• Local minima, saddle points, etc…

• Can take a long time to train

• Architecture choices:
• How many layers? How many units in each layer?

• What activation function to use?

• Choice of optimizer:
• We talked about gradient descent, but there are 

techniques that improves upon gradient descent
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Demo

http://playground.tensorflow.org/
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