Artificial Neural Networks: Intro

“Making Cnnections” by Filomena Booth (2013)

Slides from Andrew Ng, Geoffrey CSC411: Machine Learning and Data Mining, Winter 2018

Hinton, and Tom Mitchell) .
Inton, and lom Mitche Michael Guerzhoy and L|sa12hang

Non-Linear Decision Surfaces

* There is no linear decision boundary

Car Classification

Testing:

What is this?

You see this:

But the camera sees this:

194
130
114
87
1oz
94
68
41
20
50
72
67

210
1389
126
103
llz
95
71
56
43
50
59
61

201
190
140
115
106
79
69
68
69
57
53
58

z2lz
221
188
154
131
104
98
99
75
69
66
65

199
209
176
143
lzz
105
89
63
56
75
84
75

213
205
165
142
138
124
9z
45
41
75
9z
78

215
191
152
149
152
129
98
60
51
73
g4
76

195
167
140
153
147
113
95
82
73
74
74
73

178
147
170
173
128
107
89
58
55
53
57
59

158
115
106
101
84
87
88
76
70
68
72
75

182
129
78
57
58
69
76
75
63
59
63
69

209
163
88
57
66
67
67
65
44
37
42
50

Learning
Algorithm

pixel 2 +

v

+ Cars pixel 1
= “Non”-Cars

Learning
Algorithm

pixel 2 +

v

+ Cars pixel 1
= “Non”-Cars

Learning
Algorithm

pixel 2
. 50 x 50 pixel images— 2500 pixels
oixel 2 - N + 4 n=2500 (7500 if RGB)
- + _ _

- £ pixel 1 intensity

- o pixel 2 intensity
- * o

- 7 - S pixel 2500 intensity
4+ Cars pixel 1 ~ Quadratic features (x; X x): =3 million

- “Non”-Cars features

Simple Non-Linear Classification Example

1 IT9
A A O X
O X O o0 O X X
%2 x, |O X
o 7 Xx
NS o XX 00
- X4 x x OOO

Yy =T XOR L9 X,

Inspiration: The Brain

iImpulses carried
toward cell body

branches
dendrites of axon
.*,;;_
. axon
axon =<8, .
nucleus) *~ terminals
| / | K
714 (\ \impulses carried NS,

away from cell body
cell body

Inspiration: The Brain

L0 wo

*@® synapse
axon from a neuron ™\
. Wox(

cell body f (Z iy b)
. Z Wi + b f i =
- output axon
activation
function

W9

Linear Neuron

Wo + W1 X1 + Wy X + W3X3

Linear
neuron

Linear Neuron: Cost Function

* Any number of choices. The one made for linear
regression is

(@ - whx®)°

e Can minimize this using gradient descent to obtain
the best weights w for the training set

Logistic Neuron

a(Wo + wix1 + WaXp + wax3),0(t) = 1+ exp(—t)

Logistic Neuron: Cost Function

* Could use the quadratic cost function again

* Could use the “log-loss” function to make the
neuron perform logistic regression

" .
, 1 . exp(—wTx®)
- O — |+ (1 —y®)l .
(Z Y Og(l + exp(—WTx(‘))> (1 =y*)log 1+ exp(—wTx®)

i=1

(Note: we derived this cost function by saying we want to
maximize the likelihood of the data under a certain model, but
there’s nothing stopping us from just making up a loss function)

Logistic Regression Cost Function: Another Look

—log(hy(x)),y =1
. log(l — hw(x)) , y =0

* If y = 1, want the cost to be small if h,, (x) is close
to 1 and large if h,, (x) is close to O
* -log(t) is O for t=1 and infinity fort =0

e If y = 0, want the cost to be small if h,,,(x) is close
to 0 and large if h,,(x) is close to 1 .
* Note:0 < o(t) <1 f

1 =
1+ exp(—t) /

e Cost(h, (x),y) = «

o(t) =

Multilayer Neural Networks

* hyj = g(W,;x)
= g(z Wi ikXk)
k

* xo = 1 always

* Wi j o is the “bias”

* g is the activation function
* Couldbe g(t) =t
* Could be g(t) = o(t)

* Nobody uses those
anymore...

Why do we need activation
functions?

L wo

*® synapse
axon from a neuron
. Wox

cell body

f (Z w;T; + b)

!
output axon

f

activation

Wo Xs function

17

Activation functions?

Most commonly used activation functions:

1

o Sigmoid: 0(2) = o7

@ Tanh: tanh(z) = eexng)):xxggzg

® RelLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Sigmoid: f(z) = 1{1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(z)+exp(-2)]

RelLU: f(z) = max(0, 2)

Exercise:

* Hand code a neural network to compute:
* AND
* XOR

e Use only sigmoid
* Use only RelLU activations

Multilayer Neural Network:

)

Speech Recognition Example

(multi-class classification

20

Universal Approximator

* Neural networks with at least one hidden layer (and
enough neurons) are universal approximators

e Can represent any (smooth) function

* The capacity (ability to represent different
functions) increases with more hidden layers and
more neurons

* Why go deeper? One hidden layer might need a /ot
of neurons. Deeper and narrower networks are
more compact 4 -

Computation in Neural Networks

* Forward pass
* Making predictions
* Plugin the input x, get the outputy

* Backward pass

 Compute the gradient of the cost function with respect
to the weights

Multilayer Neural Network for
Classification:

o0; is large if the
probability that the
correct class is i is high

outputs

hidden
« | layer

A possible cost function: _
<«=m |INpUt vector (X)

C(o,y) = Z ly® — o®)2

y®)’s and o(l) S encoded using
one-hot encoding

23

Forward Pass (vectorized)

T
0=4g (W(Z)) h+b® output units
h=g((WD) x+p®
g () O T hidden units

...etc... if there are more layers @ ® @ inputunits

24

Backwards Pass (training)

Need to find

m
W = argminz loss(oM, y())
=

Where:
e 0 s the output of the neural network

. y(i) is the ground truth
* ¥ is all the weights in the neural network
* [oss is a continuous loss function.

Use gradient descent to find a good W

But how to compute gradient?

* To optimize the weights / parameters o the neural
network, we need to compute gradient of the cost
function:

C(o,y) = X2, loss(0®,y)
with respect to every weight in the neural network.

* Need to compute, for every layer and weight [, j, i :

aw (LD
* How to do this? How to do this efficiently?

Review: Chain Rule

e Univariate Chain Rule

d
Eg(f(t)) =

 Multivariate Chain Rule

99 _ 99 97
0x df; 0x

dg df

df dt

27

Gradient of Single Weight (last layer)

. Wed rteed the partial derivatives of the cost function C (o0, y) w.r.t all the W
and b.

° Oi — g(zj W(z']'l)h] + b(ZJ))
o letz; = ;W@ + p@J) so that o; = g(z;)

« Partial derivative of C(o,y) with respect to W (2J:9) 3]] evaluated at
(x,y,W,b,h, o)

aW(Z'j'i) _ aW(ZJ;l) aol

__0z_dg0c
— aw@iD az; do;

ag oc
2 O
J aZiaOi

L0
= h;g'(z;) 35, C(0,Y)

28

Gradient of Single Weight (last layer)

* For example, if we use:
e sigmoid activation g = 0,0’ (t) = a(t)(l — a(t))
« MSE loss: C(0,y) = Y, (0; — y;)?

 Then
aCc dC

ow@iD jgl(zi)a_oi
= J'g(Zi)(l — g(Zi))Z(Oi — Vi)
= hjo;(1 - 0)2(0; — ¥1)

Vectorization

* For a single weight, we had:

aC
gD — ol —0)2(0; — i)

* Vectorizing, we get

dC
O 2h - (0.(1—0).(0 — y))T

» Note this is for sigmoid activation, square loss

What about earlier layers?

‘ outputs
hidden

| layer

Use multivariate chain rule:

aC aC doy,

2NV & Input vector (X)
ahi - aOk hi

oc 9C Ok
oW LJD — 9h; oW (LD

31

Backpropagation

G OUtpUtS

hidA
hidden
lavers
hidB y
ac dC dhidA,

ohidB; 4 Ghida, anias,

oC 9C 0hidB;
oW @i — dhidB; oW (LID

32

Compare outputs with
Back-propagate correct answer to get

error signal to error signal

get derivatives
for learning <« Outputs
hidden
layers
<= iNput vector

33

Tralning Summary

&

(Training neural nets:

Loop until convergence:

» for each example n

2
S.

Given input x\™ , propagate activity forward (x(”) — h{™ — o(")
(forward pass)

Propagate gradients backward (backward pass)

Update each weight (via gradient descent)

34

Why is training neural networks
so hard?

* Hard to optimize:

* Not convex
* Local minima, saddle points, etc...
* Can take a long time to train

e Architecture choices:

* How many layers? How many units in each layer?
* What activation function to use?

* Choice of optimizer:

* We talked about gradient descent, but there are
techniques that improves upon gradient descent

Demo

http://playground.tensorflow.org/

