#### A Brief Intro to Bayesian Inference



Thomas Bayes (c. 1701 – 1761)

CSC411/2515: Machine Learning and Data Mining, Winter 2018

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$ 

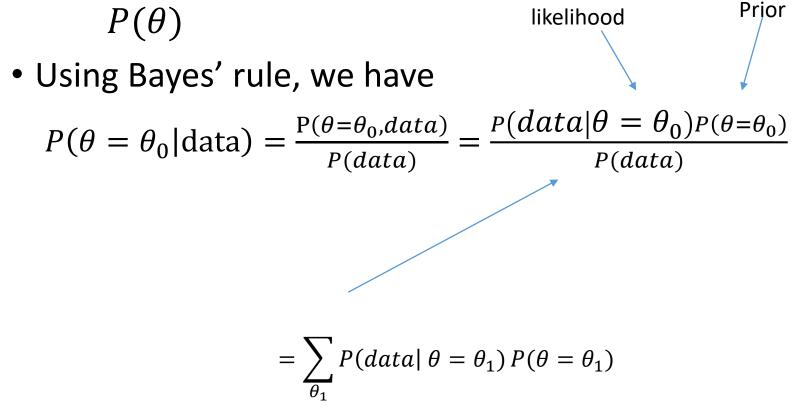
Michael Guerzhoy and Lisa, Zhang

# Tossing a Coin

- Suppose the coin came up Heads 65 times and Tails 35 times. Is the coin fair?
- Model:  $P(heads) = \theta$
- Log-likelihood:  $\log P(data|\theta) = 65 \log \theta + 35 \log(1 \theta)$ 
  - Maximized at  $\theta = .65$
- But would you conclude that the coin really is not fair?

### **Prior Distributions**

 We can encode out beliefs about what the values of the parameters could be using



3

# Maximum a-posteriori (MAP)

• Maximize the *posterior probability* of the parameter:

$$argmax_{\theta_0} \frac{P(data | \theta = \theta_0) P(\theta = \theta_0)}{P(data)}$$

$$= argmax_{\theta_0} P(data|\theta = \theta_0) P(\theta = \theta_0)$$

 $= argmax_{\theta_0} \log P(data | \theta = \theta_0) + \log P(\theta = \theta_0)$ 

- The posterior of probability is the product of the prior and the data likelihood
- Represents the *updated* belief about the parameter, given the observed data

Aside: Bayesian Inference is a Powerful Idea

- You can think about anything like that. You have your prior belief  $P(\theta)$ , and you observe some new data. Now your belief about  $\theta$  must be proportional to  $P(\theta)P(data|\theta)$ 
  - But only if you are 100% sure that the likelihood function is correct!
  - Recall that the likelihood function is your model of the world it represents knowledge about how the data is generated for given values of  $\theta$
  - Where do you get your original prior beliefs anyway?
- Arguably, makes more sense than Maximum Likelihood

# Back to the Coin

• (In Python)

### Gaussian Residuals Models

• Log-likelihood:

$$\log P(data|\theta) = \sum_{i=1}^{\infty} -\frac{\left(y^{(i)} - \theta^T x^{(i)}\right)^2}{2\sigma^2} - \frac{m}{2}\log(2\pi\sigma^2)$$

- Suppose we believe that  $P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$ 
  - I.e., the coefficients in  $\theta$  will generally be in  $[-1.5/\lambda, 1.5/\lambda]$
- $\log[P(data|\theta)P(\theta)]$  is  $\log P(data|\theta) \lambda|\theta|^2 + const$ (exercise)
- Maximize  $\log[P(data|\theta)P(\theta)]$  to get the  $\theta$  that you believe the most

# Why $P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$

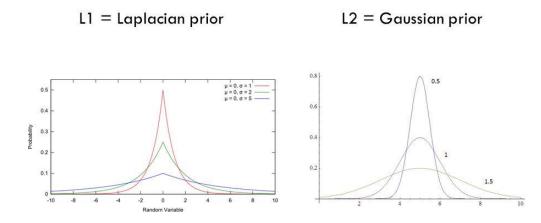
- More on this later
- If the  $\theta_i$ 's are allowed to be arbitrarily large, the ratio of the influences of the different features over the decision boundary could be arbitrarily high
  - Difficult to believe that one of the features still matters, but it matters a 10000000 times less than some other feature
    - Easy to believe a feature doesn't matter at all, though
    - Only reasonable if the inputs are all on the same scale, and the output is on roughly the same scale as the inputs
  - Mostly when we fit coefficients, they don't get crazy high, so it's a reasonable prior belief

# L2 Regularization

- L2 regularization: maximize:  $\log P(data|\theta) - \lambda |\theta|^2 + const$
- "L2 regularization" because numerically, the cost function penalizes the L2 norm of  $\theta$
- A way of preventing overfitting
  - If we set  $\lambda$  to be very high,  $\theta$  will just be 0: the performance on the training and test sets will be the same (and will be bad)
  - If we set  $\lambda$  to be moderately high, we won't let  $\theta_i$ 's be too large even if that leads to good performance on the training set. Idea: if the training set makes a  $\theta_i$  very large, that probably won't be good for test set performance, since usually large  $\theta_i$  's lead to poor performance
- What about other norms?

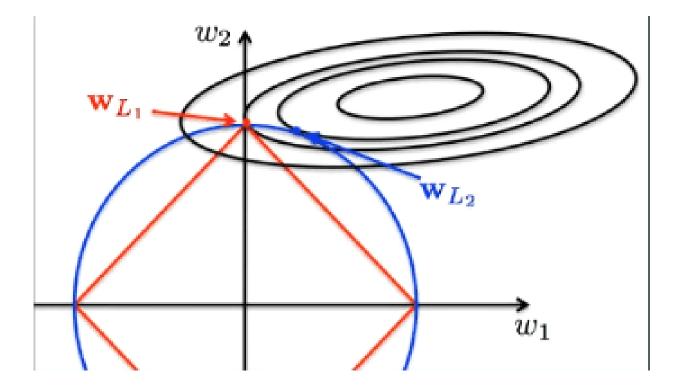
# L1 Regularization

- Alternative: L1 regularization: maximize:  $\log P(data|\theta) - \lambda |\theta|_1 + const$
- Equivalent to using a Laplacian prior:

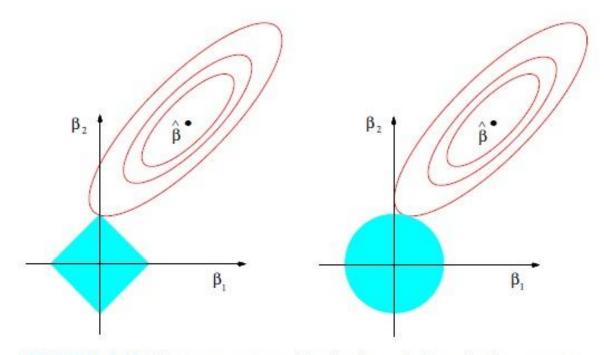


- Encourages sparsity (feature selection)
  - Sparsity: most  $\theta_i$  are zero

# L2 vs L1 regularization



### L2 vs L1 regularization



**FIGURE 3.11.** Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions  $|\beta_1| + |\beta_2| \le t$  and  $\beta_1^2 + \beta_2^2 \le t^2$ , respectively, while the red ellipses are the contours of the least squares error function.

# Early Stopping

- Initialize the  $\theta$ s to small initial values
- Run Gradient Descent, but stop early
  - Before finding the minimum of the cost function applied to the training set
  - More on this later this week
- Can be shown to be equivalent of L2 regularization (under certain assumptions
- Why does it work?