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Tossing a Coin

• Suppose the coin came up Heads 65 times and Tails 
35 times. Is the coin fair?

• Model: 𝑃 ℎ𝑒𝑎𝑑𝑠 = 𝜃

• Log-likelihood:  log 𝑃 𝑑𝑎𝑡𝑎 𝜃 = 65 log 𝜃 +
35 log(1 − 𝜃)
• Maximized at 𝜃 = .65

• But would you conclude that the coin really is not 
fair?
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Prior Distributions

• We can encode out beliefs about what the values 
of the parameters could be using

𝑃(𝜃)

• Using Bayes’ rule, we have

𝑃 𝜃 = 𝜃0 data =
P 𝜃=𝜃0,𝑑𝑎𝑡𝑎

𝑃(𝑑𝑎𝑡𝑎)
=

𝑃 𝑑𝑎𝑡𝑎 𝜃 = 𝜃0 𝑃 𝜃=𝜃0

𝑃(𝑑𝑎𝑡𝑎)

likelihood Prior

= ෍

𝜃1

𝑃 𝑑𝑎𝑡𝑎 𝜃 = 𝜃1) 𝑃(𝜃 = 𝜃1)
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Maximum a-posteriori (MAP)

• Maximize the posterior probability of the 
parameter:

𝑎𝑟𝑔𝑚𝑎𝑥𝜃0
𝑃 𝑑𝑎𝑡𝑎 𝜃 = 𝜃0 𝑃 𝜃=𝜃0

𝑃(𝑑𝑎𝑡𝑎)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃0𝑃 𝑑𝑎𝑡𝑎 𝜃 = 𝜃0 𝑃 𝜃 = 𝜃0

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃0 log 𝑃 𝑑𝑎𝑡𝑎 𝜃 = 𝜃0 + log 𝑃 𝜃 = 𝜃0

• The posterior of probability is the product of the prior and 
the data likelihood

• Represents the updated belief about the parameter, given 
the observed data
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Aside: Bayesian Inference is a Powerful Idea

• You can think about anything like that. You have 
your prior belief 𝑃(𝜃), and you observe some new 
data. Now your belief about 𝜃 must be proportional 
to 𝑃 𝜃 𝑃 𝑑𝑎𝑡𝑎 𝜃
• But only if you are 100% sure that the likelihood 

function is correct!
• Recall that the likelihood function is your model of the 

world – it represents knowledge about how the data is 
generated for given values of 𝜃

• Where do you get your original prior beliefs anyway?

• Arguably, makes more sense than Maximum 
Likelihood
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Back to the Coin

• (In Python)
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Gaussian Residuals Models

• Log-likelihood: 

log𝑃 𝑑𝑎𝑡𝑎 𝜃 =෍−
𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

2𝜎2
−
m

2
log(2𝜋𝜎2)

• Suppose we believe that 𝑃 𝜃𝑖 = 𝑁 0,
1

2𝜆

• I.e., the coefficients in 𝜃 will generally be in −1.5/𝜆, 1.5/𝜆

• log[𝑃 𝑑𝑎𝑡𝑎 𝜃 𝑃 𝜃 ] is  log 𝑃 𝑑𝑎𝑡𝑎 𝜃 − 𝜆 𝜃 2 + 𝑐𝑜𝑛𝑠𝑡
(exercise)

• Maximize log[𝑃 𝑑𝑎𝑡𝑎 𝜃 𝑃 𝜃 ] to get the 𝜃 that you believe 
the most
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Why 𝑃 𝜃𝑖 = 𝑁 0,
1

2𝜆

• More on this later

• If the 𝜃𝑖’s  are allowed to be arbitrarily large, the 
ratio of the influences of the different features over 
the decision boundary could be arbitrarily high
• Difficult to believe that one of the features still matters, 

but it matters a 10000000 times less than some other 
feature
• Easy to believe a feature doesn’t matter at all, though
• Only reasonable if the inputs are all on the same scale, and the 

output is on roughly the same scale as the inputs

• Mostly when we fit coefficients, they don’t get crazy 
high, so it’s a reasonable prior belief
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L2 Regularization

• L2 regularization:
maximize: log 𝑃 𝑑𝑎𝑡𝑎 𝜃 − 𝜆 𝜃 2 + 𝑐𝑜𝑛𝑠𝑡

• “L2 regularization” because numerically, the cost function 
penalizes the L2 norm of 𝜃

• A way of preventing overfitting

• If we set 𝜆 to be very high, 𝜃 will just be 0: the performance on the 
training and test sets will be the same (and will be bad)

• If we set 𝜆 to be moderately high, we won’t let 𝜃𝑖’s be too large 
even if that leads to good performance on the training set. Idea: if 
the training set makes a 𝜃𝑖 very large, that probably won’t be good 
for test set performance, since usually large 𝜃𝑖 ‘s lead to poor 
performance

• What about other norms?
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L1 Regularization

• Alternative: L1 regularization:
maximize: log 𝑃 𝑑𝑎𝑡𝑎 𝜃 − 𝜆 𝜃 1 + 𝑐𝑜𝑛𝑠𝑡

• Equivalent to using a Laplacian prior:

• Encourages sparsity (feature selection)

• Sparsity: most 𝜃𝑖are zero 10



L2 vs L1 regularization
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L2 vs L1 regularization
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Early Stopping

• Initialize the 𝜃s to small initial values

• Run Gradient Descent, but stop early 

• Before finding the minimum of the cost function applied to the 
training set

• More on this later this week

• Can be shown to be equivalent of L2 regularization (under 
certain assumptions

• Why does it work?
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