A Brief Intro to Bayesian Inference

P(B|A)P(A)
P(B)

P(A|B) =

Thomas Bayes (c. 1701 —1761)

CSC411/2515: Machine Learning and Data Mining, Winter 2018
Michael Guerzhoy and LisaIZhang

Tossing a Coin

e Suppose the coin came up Heads 65 times and Tails
35 times. Is the coin fair?

* Model: P(heads) = 6
* Log-likelihood: log P(data|6) = 65log6 +
35log(1 —0)
 Maximized at 8 = .65

e But would you conclude that the coin really is not
fair?

Prior Distributions

 We can encode out beliefs about what the values
of the parameters could be using

P(9) likelihood Prior
e Using Bayes’ rule, we have

P(8=6y,data) _ P(data|@ = Oy)P(8=6)
P(data) - P(data)

P(6 = 6,y|data) =

= EP(dataI 0 =06,)P0 =0,)
01

Maximum a-posteriori (MAP)

* Maximize the posterior probability of the
parameter:

p(data|@ = 6y)P(6=6,)
P(data)

argmaxg,

= argmaxg P(datald = 6,)P(0 = 6,)
= argmaxg, log P(datal® = 6,) + log P(6 = 6,)

* The posterior of probability is the product of the prior and
the data likelihood

* Represents the updated belief about the parameter, given
the observed data

Aside: Bayesian Inference is a Powerful Idea

* You can think about anything like that. You have
your prior belief P(8), and you observe some new
data. Now your belief about 8 must be proportional
to P(6)P(datal|B)

* But only if you are 100% sure that the likelihood
function is correct!

* Recall that the likelihood function is your model of the
world — it represents knowledge about how the data is
generated for given values of 0

 Where do you get your original prior beliefs anyway?

* Arguably, makes more sense than Maximum
Likelihood

Back to the Coin

* (In Python)

Gaussian Residuals Models

Log-likelihood:

(y(l) ng(l)) m
logP(datal0) = z — —log(2mo?)

202 2

Suppose we believe that P(6;) = N (0, (%))

* |.e., the coefficients in 8 will generally be in [—1.5/4,1.5/1]

log[P(data|@)P(0)]is log P(data|0) — A|8|? + const
(exercise)

Maximize log[P(data|8)P(0)] to get the 6 that you believe
the most

Why P(8,) = N (0, (ﬁ)

* More on this later

* If the 6;’s are allowed to be arbitrarily large, the
ratio of the influences of the different features over
the decision boundary could be arbitrarily high

 Difficult to believe that one of the features still matters,
but it matters a 10000000 times less than some other
feature
* Easy to believe a feature doesn’t matter at all, though
* Only reasonable if the inputs are all on the same scale, and the
output is on roughly the same scale as the inputs
* Mostly when we fit coefficients, they don’t get crazy
high, so it’s a reasonable prior belief

L2 Regularization

* L2 regularization:
maximize: log P(data|0) — 1|0]? + const

e “L2 regularization” because numerically, the cost function
penalizes the L2 norm of 6

* A way of preventing overfitting

* If we set A to be very high, 8 will just be 0: the performance on the
training and test sets will be the same (and will be bad)

* If we set A to be moderately high, we won’t let 6;’s be too large
even if that leads to good performance on the training set. ldea: if
the training set makes a 6; very large, that probably won’t be good
for test set performance, since usually large 8; ‘s lead to poor
performance

e What about other norms?

L1 Regularization

* Alternative: L1 regularization:
maximize: log P(datal|8) — A|8|; + const

e Equivalent to using a Laplacian prior:

L1 = Laplacian prior L2 = Gaussian prior

aaaaaaaaaaaaa

* Encourages sparsity (feature selection)

* Sparsity: most 0;are zero
Image credit: http://slideplayer.com/slide/8012755/

L2 vs L1 regularization

11

L2 vs L1 regularization

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |82 < t and 8] + B3 < t°, respectively,
while the red ellipses are the contours of the least squares error function.

12

Early Stopping

Initialize the s to small initial values

Run Gradient Descent, but stop early

* Before finding the minimum of the cost function applied to the
training set

* More on this later this week

Can be shown to be equivalent of L2 regularization (under
certain assumptions

Why does it work?

