Generative Adversarial Networks

Some slides from Fei-Fei Li, Justing Johnson, Serena Yeung, and Roger Grosse

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa₁Zhang

Reminder: Autoencoders

- Learn to compute a code that can be used to generate a *reconstruction*
- The reconstructions are generally blurry
- Try to minimize the squared difference between the input and the reconstruction

How does the decoder work?

- $W^{(7,i,:)}$ is the i-th template for the image
- The second-to-last layer defines the coefficients for each of the templates
- The code contains information about how to compute those coefficients
 - (For faces) Whose face is it?
 - (For faces) Which way is the person looking?

Example generated images:

 Generated using a variant of autoencoders <u>https://www.youtube.com/watch?v=XNZIN7Jh3Sg</u>

Why are the outputs blurry for vanilla autoencoders?

- 700 global templates isn't bad if we want to reconstruct faces 64x64 in size
 - Don't even need a deep architecture
- 700 global templates is pretty bad if we want to reconstruct large images
 - Want to get the details in the image right

Local & Hierarchical Templates

- Want to start with the code and build up the output images
- Want to build up the image from *local* templates
 - Stitch the images together from plausible image patches instead of averaging global templates
 - Want to output an image of an eye at potentially a lot of locations, just store information about what eyes look like once.

A generator with fractionallystrided convolutions

Partially-strided convolutions

- Can get a 4×4 output from a 2×2 input by zero padding
- A more efficient way of accomplishing the same thing:
 - If a convolution can be computed using A = CB where C is a large matrix (the weights of the *convolution kernel* arranged so that things work out), we can compute C^TA to get a matrix that has the same size as B

A probabilistic generative model

- To generate a random image
 - Sample *z*~*N*(0,*I*)
 - Each coordinate in z determines the content of the image
 - Run the *z* though the decoder

Training deep autoencoders

- Training deep autoencoders is difficult and doesn't work very well
- Convolutions and down-sampling means exact location information is lost
- An active research area

Generative Adversarial Nets (GANs)

- Idea: train two networks
 - Generator network: try to fool the discriminator by generating real-looking images
 - **Discriminator network**: try to distinguish between real and fake images

Training GANs: Two-Player Game

- Play a minimax game: given that the discriminator will try to do the best job it can, the generator is set to make the discriminator as wrong as possible.
- The discriminator outputs a probability

Training GANs: Two-Player Game

$$\min_{\theta_g} \max_{\theta_d} \left[E_{x \sim p_{data}} \log D_{\theta_d}(x) + E_{z \sim p(z)} \log(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right)) \right]$$

x is randomly sampled from the training data. The discriminator wants to output 1 *z* is randomly sampled, and then a fake image is generated by the generator from the code *z*. The discriminator wants to output 0

Training GANs: a Two-player game

$$\min_{\theta_g} \max_{\theta_d} \left[E_{x \sim p_{data}} \log D_{\theta_d}(x) + E_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]$$

- Alternate between:
 - Gradient ascent for the discriminator 1.

$$\max_{\theta_d} [E_{x \sim p_{data}} \log D_{\theta_d}(x) + E_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z)\right)\right)]$$

1

Do a better job outputting 1 on real images and 0 on fake images

2. Gradient descent on the generator

$$\min_{\theta_g} E_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right)$$

Do a better job making sure the discriminator outputs large numbers on fake images

Modifying the cost function

$$\min_{\theta_g} E_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right)$$

- Problem: if the generator is doing a bad job and the discriminator knows it, it's hard to learn from that
 - Modified cost:

$$\mathbf{J} = E_{z \sim p(z)} - \log\left(D_{\theta_d}\left(G_{\theta_g}(z)\right)\right)$$

• Now, the generator is doing poorly for code z, $\frac{\partial J}{\partial D_{\theta_d}(G_{\theta_g}(z))}$ is large, so that the update to θ_g is large

15

Training in practice

• Sample real images from the train set to estimate

$$E_{x \sim p_{data}} \log D_{\theta_d}(x) \approx \frac{1}{n} \sum_i \log D_{\theta_d}(x^{(i)})$$

- Sample fake images (by first sampling code z and then generating images) to estimate $E_{z \sim p(z)} -\log\left(D_{\theta_d}\left(G_{\theta_g}(z)\right)\right) \approx -\frac{1}{n}\sum_{i}\log\left(D_{\theta_d}\left(G_{\theta_g}(z^{(i)})\right)\right)$
- Can compute the gradients now!

Training GANs

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Training a GAN

Real samples …… are far away from generated sample distribution — The discriminator probability … is high for real samples and low for fake samples

Training a GAN

Real samples …… are far away from generated sample distribution — The discriminator probability … is high for real samples and low for fake samples

Training a GAN

Real samples \cdots are close to the generated sample distribution -

The discriminator probability \cdots is high for most real samples but not all and high for some fake samples

Real samples are very close to the generated sample distribution —

The discriminator probability \cdots is constant since the discriminator can't tell real from fake samples

Initial results: Generated Images

Nearest examples from train set

Goodfellow et al. 2014

Convolutional Architecture: Generated images

Radford et al. 2016

Interpolating between random points in latent (z) space

 $z = z_0$

 $z = 0.2z_0 + 0.8z_1$ $z = z_1$

Vector Arithmetic in z space

Vector arithmetic in z space

Glasses man

No glasses man No glasses woman

Radford et al, **ICLR 2016**

Woman with glasses

GANs in practice

- Difficult to train (VERY difficult!)
- Difficult to numerically see whether there is progress
 - Plotting the "learning curve" (the minmax objective function) doesn't help too much
 - Like plotting win rate in P4Bonus (Self-play)
 - Both players get better over time
- Difficult to generate globally consistent structure
- But when GANs work, they work fairly well