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Reminder: Autoencoders
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Encoder

e Learn to compute a code that can be used to generate a reconstruction
* The reconstructions are generally blurry

* Try to minimize the squared difference between the input and the
reconstruction 2



How does the decoder work?
Reconstruction
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« W) is the i-th template for the image

* The second-to-last layer defines the coefficients for
each of the templates

* The code contains information about how to compute
those coefficients

* (For faces) Whose face is it?
* (For faces) Which way is the person looking?




Example generated images:

* Generated using a variant of autoencoders
https://www.youtube.com/watch?v=XNZIN7Jh3Sg
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https://www.youtube.com/watch?v=XNZIN7Jh3Sg

Why are the outputs blurry for
vanilla autoencoders?

e 700 global templates isn’t bad if we want to
reconstruct faces 64x64 in size

 Don’t even need a deep architecture

e 700 global templates is pretty bad if we want to
reconstruct large images

* Want to get the details in the image right



Local & Hierarchical Templates

* Want to start with the code and build up the
output images

* Want to build up the image from local templates

 Stitch the images together from plausible image patches
instead of averaging global templates

* Want to output an image of an eye at potentially a lot of
locations, just store information about what eyes look
like once.

=» Convolutions.



A generator with fractionally-
strided convolutions




Partially-strided convolutions

e Cangeta4 X 4 output froma 2 X 2 input by zero padding
* A more efficient way of accomplishing the same thing:
* If a convolution can be computed using A = CB where C is a large
matrix (the weights of the convolution kernel arranged so that things
work out), we can compute CT A to get a matrix that has the same

sizeas B



A probabilistic generative model

* To generate a random image
e Sample z~N(0,])
* Each coordinate in z determines the content of the image

* Run the z though the decoder S
training distribution =

Generator
Network

f

Input: Random noise \ z




Training deep autoencoders

* Training deep autoencoders is difficult and doesn’t
work very well

* Convolutions and down-sampling means exact
location information is lost

* An active research area



Generative Adversarial Nets (GANSs)

* |dea: train two networks

* Generator network: try to fool the discriminator by
generating real-looking images

* Discriminator network: try to distinguish between real
and fake images

Real or Fake

Dlscrlmlnator Network

Real Images
(from training set)

Generator Network

f

Random noise \ z |

Fake Images
(from generator)
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Training GANs: Two-Player Game

* Play a minimax game: given that the discriminator
will try to do the best job it can, the generator is set
to make the discriminator as wrong as possible.

* The discriminator outputs a probability

Real or Fake

Dlscrlmlnator Network D
Fake Images Real Images
(from generator) | (from training set)
G0g g Generator Network
f

Random noise \ Z \
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Training GANs: Two-Player Game

min r%?lx[Ex"’pdata log Dg ,(x) + E;p(z) log(1 — Dy, (Geg (?)))]
9

x is randomly sampled z is randomly sampled, and then a fake
from the training data. The image is generated by the generator
discriminator wants to from the code z. The discriminator wants
output 1 to output O

Real or Fake

Dlscrlmmator Network D B4
Fake Images Real Images
(from generator) (from training set)
Ggg ” Generator Network

*

Random noise \ Z |
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Training GANs: a Two-player game

min rréz;llx[Eprdam log Dy, (x) + E;pz) log (1 — Dy, <Ggg (Z)))]
)

* Alternate between:
1. Gradient ascent for the discriminator

r%éle[Ex“‘pdata log Dy, (x) + E;p(z) log (1 — Dy, <Geg (Z))>]

Do a better job outputting 1 on real images and 0 on fake images
2. Gradient descent on the generator

I%il’l EZ~p(Z) log (1 — ng (Geg (Z)>>
g

Do a better job making sure the discriminator outputs large numbers on fake
images



Modifying the cost function

ngin Espylog|1—Dg, (Ggg (Z))
g

* Problem: if the generator is doing a bad job and the
discriminator knows it, it’s hard to learn from that

* Modified cost:

J = Ezpz) —log (DQd (Geg (Z))>
* Now, the generator is doing poorly for code z,
aJ
aDed(Geg(Z)

modified
cost

) is large, so that the update to 6, is large

minimax
cost

4

-2

o 02 04 a6 08 1o

D(G(z))
(how well it fooled
the discriminator)



Tralning In practice

e Sample real images from the train iet to estimate
Ex"“pdata lOg ng(X) ~ Ez lOg ng(x(i))
i

» Sample fake images (by first sampling code z and then generating
images) to estimate

E;p(z) —log (ng (Ggg (z))) X — %z log (ng (Geg (Z(J')))>
J

* Can compute the gradients now!



Training GANs

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(2).
e Sample minibatch of m examples {x(!),...,2(™} from data generating distribution
Péaa().

e Update the discriminator by ascending its stochastic gradient:

m

1 ' i
Vi 2 [10g Do, (29) +10g(1 — Dy, (Go, (9)))]
end for

e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):

L 3" log(Dy, (Gr, (29)))
=1

m <

Vg,

end for
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Training a GAN

//"
/ B Generator

Real samples :----- are far away from generated
sample distribution

The discriminator probability - is high for real
samples and low for fake samples

18



Training a GAN

Generator

Real samples :----- are far away from generated
sample distribution
The discriminator probability - is high for real

samples and low for fake samples
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Training a GAN
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Real samples :----- are close to the generated
sample distribution
The discriminator probability - is high for most
real samples but not all and high for some fake
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Training a GAN
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Real samples :----- are very close to the generated

sample distribution
The discriminator probability -+ is constant since

the discriminator can’t tell real from fake samples
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Initial results: Generated Images

Nearest examples from
train set Goodfellow et al. 2014



Convolutional Architecture:
Generated images
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Radford et al. 2016
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Interpolating between random
points in latent (z) space

Z=2 z=0.2zy + 0.824 Z =2z
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Vector Arithmetic in z space

o Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Smiling Man

Samples
from the <
model

Average Z
vectors, do
arithmetic
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Vector arithmetic in z space

Glasses man No glasses man No glasses woman :f:a&mfé al,

Woman with glasses
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GANSs In practice

e Difficult to train (VERY difficult!)

* Difficult to numerically see whether there is
progress

* Plotting the “learning curve” (the minmax objective
function) doesn’t help too much

* Like plotting win rate in P4Bonus (Self-play)
* Both players get better over time

* Difficult to generate globally consistent structure
* But when GANs work, they work fairly well



