Q-learning

“Recalculatin g ... recalculating ... ”

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisalzhang

Recall Terminology

e State: S, Action: A, Reward: r
* Policy: mg(s,a)
o Return: Gy = Trypq + YTeyp + VT3 +..

e Value Function:
VTe(s) = E[Gt|5t = 5]

 Action-Value Function:
q™9(a,s) = E|G¢|S; = s,A; = a]

e Relationship:

VTe(s) =) g (als) 7(a,5)

a

Q-Learning

e Learn the Action-Value Function:
q™0(a,s) = E[G¢|S; = s,A; = a]

 Q-Learning: Learn the g function!

* Then, define policy to be
g (s,a) =argmax,q™®(a,s) or
g (s,a) x g™ (a,s)
* Or use an epsilon-greedy policy:
e Choose my(s,a) =argmax,q™(a,s) most of the time

e Choose a random action some of the time

Bellman Equation (1)

 The Value Function can be decomposed:
VT (s) = E[G|S; = s]

Ve (s,)
= E[rp41 + ¥Teq2 + ¥V 143+ |Se = 5]
= E[rt+1 + Y(Tea2 YTz +..)[Se = S]
= E[rt41 + ¥Ge1115: = 5]
= E[rp41 + YE[V™0(Se1]IS = 5]

Bellman Equation (2)

 The Action-Value Function can also be decomposed:
q"0(a,s) = E[G¢|S; = s,A¢ = a

q™(a,s)
= Elre4q +¥Te42 + Vzrt+3+-- 1St = 5,4 = a

= E[rt41 + Y (Tea2HYTea3+.)[Se = 5, A = a],
= E[rt41 + ¥Gi11|S: = 5, A = al

= E[rt41 T YE[V™0(Se41)]IS: = 5, A = al

= Elre41 + YE[q™0 (At11, Se+1)1ISe = s, A = al

Optimal Policy

* Suppose we have an optimal policy 7*, then we
should have the following Bellman Equations

V*(s) = maxq*(a,s)
a

q*(a,s) = E|re14|St = s,Ar = a] + vE [H}lE}X q*(a’,s)|S; = s,4; = a]

For small problems where:
* There are a small number of discrete states
* We know the state transition probabilities P(S;,1|s¢, @)

We can solve this Bellman Equation directly.

Bellman equations: conditions for optimality.
Solvable with dynamic programming

Q-Learning Intuition

e Simple algorithm to find the optimal policy
without knowing the state transition probabilities
(known as the model)

* |dea: Learn a g function by training the function to
satisfy the Bellman Equation

q*(a,s) = Elrg441S: = s, A = a] + YVE lrr}la,lx q (a',5e41) S =5, Ar = a]

For a sample s;, a;, 141, 5.+, from the environment. For the optimal g
function we should have:

q"(ay, St) = Teyq + Yy maxg g7 (a’, Serq)

Q-Learning Intuition

For a sample s;, a;, 1141, S¢+q from the
environment, and a g-function:

Loss = L(rt+1 +ymaxg q(a’, sg41) —q(ay, St))

So, train a g-function with gradient descent!

L = usually L2 loss

/ !/ 2
Loss = (rt+1 + ymax, q(a’, sp+1) —q(ag St))

Q-Learning Algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S« S

until S is terminal

Benefits

» Off-policy method: samples don’t have to be from
the current policy (though it helps)

* Don’t need to wait until episode is finished to train!

e “Learn a guess from a guess”: Q-learning is just one
algorithm in a family of algorithms that use this
idea

Q-Learning in practise

 Sample need to be diverse enough to see
everything

* Replay buffer: sample (s¢, as, 1441, S¢+1) putin
replay buffer, take a batch from replay buffer to
train (Priority replay: re-sample (s¢, a¢, ¢ +1, St+1)
with a large error)

* Takes longer to converge than policy gradient

* Even when the policy converged, the g-function
might not

Represeting g (s, a)

* Lookup table
* Learn the value of g(s, a) directly

 Works if the states and actions are discrete, and there
are few of them

* go(s,a)
* qg could be a deep (or shallow) neural network
* Want to minimize
Loss = L(Tt+1 +ymaxg qg(a’, ser1) — qo(ag, St))
* Tricky to do directly with gradient descent, but can try to
approximate

Where to go from here?

e Reinforcement Learning (Sutton & Barto)

 David Silver’s Video Lectures:
http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teach
ing.html

13

