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Netflix Challenge (2007-2009)

* Predict movie ratings better than Netflix
* Winning method combined 107 different models!
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Netflix Challenge (2007-2009)

* “Our experience is that most efforts should be
concentrated in deriving substantially different
approaches, rather than refining a simple
technique.”

* “We strongly believe that the success of an
ensemble approach depends on the ability of its
various predictors to expose different
complementing aspects of the data. Experience
shows that this is very different than optimizing
the accuracy of each individual predictor.”



Ensembles

* Ensemble of predictors is a set of predictors
whose individual decisions are combined in some

way to classify new examples

* Simplest approach:
* Generate multiple classifiers
e Each vote on test instance
» Take majority / average as prediction

* Predictors are different due to
* Different sampling of training data
 Randomized parameters within predictor algorithm

* Aim: mediocre algorithms = super classifier



Ensembles: Overview

* Bagging:
* Train separate models on overlapping training sets
* Average the predictions

* Boosting:

* [teratively re-weight training examples to focus on
harder examples

 Mixture of Experts

e Parallel training with objective encouraging division of
labour

* Plus Bayesian methods



Bias-Variance Decomposition

* Assumethat? = f(X) + € withe ~ N(0,0%)
« Assume we have a regressor model f(X)

. Eireak down the expected Mean Squared Error of
f(X) into portions:

E [(Y - f(X))2]
e —F [(Y — f(x))z: + E (f — f(x))zl
Canprove * =0°+E [(f - Ef(x))zl +E [(E[f(X)] B f(x))zl
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Irreducible Error BiasA?2 Variance
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* The expectation is with respect to sampling data
from the all the possible data

* Every time we have a new training set, we have a
new f

e I

W/

X 2
(Y — f(X )) ] is the average training error,

hen you keep trying new training sets



E ’(Y _ f(X))ZI — 62+ E [(f(x) - E[f(x)])2] +E [(E[f(x)] _ f(x))2]

- E[(v-F0)]

 The expected training error

R 2
» E|f(x) - E[f)]]
* Bias: the average difference between the actual f and the
expectation of the prediction f that you'll get.

A R 2
- E|(E[f@)] - fw) |
* Variance: how the average prediction differs from the
prediction in a particular case, If the training set is all the
possible training examples, E[f(x)] = f(x) and the
variance is zero



Bias-Variance Decomposition

Low Variance High Variance

* Bias: Erroneous
assumptions in
learning algorithm

* Variance:
Sensitivity to small
changes in training
data

High Bias

Y +E[(Y E[f()]) +E[ E[f(x)] f(x)) ]



Bias-Variance Decomposition

Prediction Error

High Bias Low Bias
Low Variance High Variance
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Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

—— Model
——— True function
e Samples

—— Model
—— True function
e Samples

High Bias vs High Variance

Degree 15
MSE = 1.82e+08(+/- 5.45e+08)

—— Model
—— True function
e Samples
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Example

* Linear regression typically have high bias.

* Decision trees (with many levels) have low bias
and high variance.

* Any model that overfits easily has high variance
(and hopefully low bias)

* One way to understand the variance of a predictor
is to sample different training datasets and
observe the empirical variance in prediction



Why do Ensemble Methods work?

e Variance reduction: if training sets are completely
independent, it will always help to average an
ensemble because this will reduce variance
without affecting bias

* Bias reduction: average of models have greater
capacity than a single model



Why do Ensemble Methods work?

* If each (independent) predictor has 30% chance of
being wrong, averaging 61 predictors will give a
very good classifier!

prob that 6 classifiers (out of 11) are wrong: 0.078225
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Figure: ¢ = 0.3: (left) N = 11 classifiers, (middle) N = 21, (right) N = 121.
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Bagging = Bootstrap Aggregation

For each k=1..K:

 Sample (with replacement) n data points from the
the training set D

* Train a model f; using the n data points

At test time, use the average of the individual
predictions of each f;,

* For regression: avg predictions
* For classification: avg class probabilities (or vote)



Bagging Example

Works well for any high variance classifiers.
Example: Decision Trees

* Decision trees overfit easily

* Fast to perform inference

e So, train lots of them!

=» Random Forest



Random Forest

RandomForest = Decision Trees
+ Bagging
+ One more trick

To reduce correlation, each split only considers a
random subset of features (instead of all).

This help produce less correlated trees.



Out-of-bag estimation

* In bagging there is a nice way to cheaply estimate
the test loss

* Each training example only appear in some of the
“bagged” trees

* OOB estimation: we predict each training example
using all the trees that did not contain it in their
training data



Out-of-bag estimation

Error Rate
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10

OOB Error is
a good
prediction of
the test error
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Aside: N-fold Cross-Validation

* Used when the available data set is small, so a
train/valid/test split is not feasible

* Split the training data into N portions
* For each k=1..N:

* Use all but the kth portion to train a predictor
* Test the predictor on the kth portion

* Goal: estimate test accuracy for the predictor

* Then train a new predictor with the entire dataset
to use at test time



Aside: Leave-one-out

e Same as cross-validation, but the size of each
portion is 1 data point

 cross-validation and leave-one-out requires
building many of the same classifier, which can be
expensive.



Aside: Parametric vs Non-
parametric models

* Parametric models make assumptions about
distributions:
* Naive Bayes, GDA, Linear Regression, Logistic
Regression...

* They have a fixed set of parameters that are
independent of the size of training set

* Non-parametric models do not:

* KNN, Decision Trees, non-parametric

* As size of training set increase, the number of
parameters increases



Bagging: Summary

* Reduces variance (overfitting) by averaging
predictions

* Even if a single model is great, a small ensemble
usually helps

 Easy to parallelize

e Limitations:
 Does not reduce bias
e Correlation between classifiers



Boosting

» Suppose you have a weak learning module (a base
classifier) that can always get slightly better than
50% correct on binary-classification

* Can you apply this learning module many times to
get a strong learner?

* YES!

* Key idea: make each classifier focus on previous
mistakes



ADABoOOsSt

* First train the base classifier on all the training data
with equal importance weights on each case

* Then re-weight the training data to emphasize the
hard cases and train a second model

* How do we re-weight the data?
e Keep training new models on re-weighted data

* Finally, use a weighted committee of all the models
at test time

 How do we weight the models in the committee?



ADABoost: Single Classifier

 Input: x, Target: y =1 or -1, Classifier: f(x) =1 or -1

* Weight on training example i for classifier m: Wr(r?

e Cost function for classifier m:
I =) Wil (x®) # y©)
i
* Weighted error rate of classifier:
_m
i Wr(ri)

€Em



ADABoOOsSt

* Weighted error rate of classifier:
Im

2 Wr(r?
e Quality of the classifier:

1 1—€,
amzzln( € )
m

* It is zero if the classifier has weighted error rate of
0.5 and infinity if the classifier is perfect

€Em




ADABoOOsSt

* Weights for next round

75111 = W exp{am fm(x(l)) = yW] }

To perform inference:

* Weight the binary prediction of each classifier by
the quality of that classifier:

f(x) = sign (Z U fm (X))

m



ADABoost: Summary

* Initialize example weights W( ) =

*Form=1to M

e Fit classifier: min J,,, = Ziw,,(,? [fn(x®D) = y©]
Jm

* Compute error: €,,;, = O
IL""m
L] L] : : 1 1_Em
* Compute classifier coefficient: a,,, = Eln( - )
m

* Update data welghts

We1 = Wan exp{amfin(xD) # y 01}

* Final model: f(x) = sign(}.,,, @ frr, (X))



ADABoost: Example

+ Weak Classifier:
+ . a stump (a tree with just one split)

+ o [Slide credit: Verma & Thrun]
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ADABoost: Example

hl D,
® -
® - + 4
+ | — + = -
+ — + —
€1 =0.30

ot y=0.42
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ADABoOOst;

€5=0.21
0y=0.65

32



ADABoost: Example

€3=0.14
0t3=0.92
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ADABoost: Example

+ 065.: +0.92 >




Example

ADABoOOsSt
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Boosting: Summary

* Reduces bias by iteratively re-weighting more
difficult data points

* Even weak classifiers can be used to build strong
classifiers



Mixture of Experts

ldea: have experts cooperate to predict output.
m J(X)
<— -

P (X)

X Q> y(x)
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Mixture of Experts

But, add gating network so
expert depends on input x

that weight of each

2 (X)

e 2
X > »

& (x)

3 y(x)

Gating
Network

38



Mixture of Experts

* This encourages specialization (local experts)
instead of cooperation

e Each expert does well on a subset of data

* Gating network softmax over experts: stochastic
selection of who is the true expert for a given input

* Used to be fairly popular, but not talked about as
much any more.



Bayesian Methods

Recall estimating Py (cancer|t) from Generative Classifiers slides:

* P(Cancer) ~ Count(;ancer)
* P(t|cancer) = N(tlicancer, Uczancer)

P(t|—cancer) = N(tl.u—.cancer: U—Zlcancer

¢ 0 — {.ucancerr lu—|CCI,TlC6T' Gcancer» O-—|C(1TLC87" e }
Maximum Likelihood:
* argmax, ;2 [I;NtW |u., 02), i € cancer
* Solution (show with calculus!):
* [, =t®,i € cancer

Y. (t( )_/"C)

y Uc i
#ncancer ’

Slide #13: What is P(cancer|t,D)? Itis not Py, ,,(cancer|t,D)!

t = test data point
D = training data

,l € cancer



Bayesian Method

* Ensembles: we don’t have to choose one 8, we can
learn several 8 and weight them

e Bayesian Method: why not choose all possible 6
and weight them? using a distribution?

* Treat the parameters as random variables

e Cancer prediction example:

P(cancer|t,D) = |, P(cancer|t,D,0)P(6|D)db
0



Bayesian Method

* Cancer prediction example:
P(cancer|t, D)
= [, P(cancer|t,D,8) P(6|D)db
= [, Pg(cancer|t,D) P(6|D)d6

. f Pg(ticancer)pg(cancer)
0 Pg(ticancer)pPg(cancer)+Pg(t|acancer)pgy(—cancer)

P(6|D)d6

p(D|0)pr(6)
P(D)

* Recall also that P(8|D) =



Bayesian Linear Regression

Prediction for new test data point x, training data D,
weights w:

P(y|x, D)
= [ P(y|x,w,D)P(w|x,D)d6
= [ P(ylx,w)P(w|x)d6

_ P(x|w)P(w)
— fw P(y|x,w) P2 do

This gives us a distribution over predicted valuesy

If model is “certain” about its predictions, the
distribution will be narrow. If the model is “uncertain”
the distribution can be wide.



Bayesian Linear Regression
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Figure 3.7 lllustration of sequential Bayesian learning for a simple linear model of the form y(x. w) =
wq + wyx. A detailed description of this figure is given in the text.



Bayesian Neural Networks

Standard Neural Net Bayesian Neural Net

P
& b

f\

8%

e Parameters represented by single, fixed e Parameters represented by distributions
values (point estimates) e Introduce a prior distribution on the weights
e Conventional approaches to training NNs P(w) and obtain the posterior P(w | D)
can be interpreted as approximations to through Bayesian learning
the full Bayesian method (equivalent to e Regqularization arises naturally through the
MLE or MAP estimation) prior P(w)

e Enables principled model comparison
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Slide credit: https://csc2541-f17.github.io/slides/lec03.pdf



Bayesian Methods Summary

* Maximum Likelihood is about optimization
* Bayesian parameter estimation is about integration

e Bayesian solution converges to maximum likelihood
as we observe more data



