
Winter 2017 Midterm Test Solutions CSC411H1

Duration: 120 minutes
Aids Allowed: Non-programmable calculator

Student Number:

Family Name(s): SOLUTIONS

Given Name(s):

Lecture Section: Afternoon Section

Evening Section

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This term test consists of 6 questions on 22 pages (including this one),
printed on both sides of the paper. When you receive the signal to start,
please make sure that your copy of the test is complete, fill in the identifi-
cation section above, and write your name on the back of the last page.

Answer each question directly on the test paper, in the space provided,
and use the reverse side of the pages for rough work. If you need more space
for one of your solutions, use the reverse side of a page and indicate clearly
the part of your work that should be marked.

You will not lose marks for minor syntax errors. If you cannot complete
a helper function that is required to solve a problem, you should clearly
indicate what the function that you cannot complete is supposed to do.
You will receive part marks as appropriate for knowing what kind of helper
function is needed and for using it correctly.

Write up your solutions carefully! Comments and docstrings are not
required to receive full marks. However, they may help us mark your an-
swers, and part marks will be given for showing that you know the general
structure of an answer, even if your solution is incomplete.

Marking Guide

# 1: / 15

# 2: / 20

# 3: / 20

# 4: / 20

# 5: / 15

# 6: / 10

TOTAL: /100
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Question 1. [15 marks]

Part (a) [5 marks]

Give an example of a dataset to which you could apply linear regression. State what the goal of applying
linear regression to that dataset is, and make up a few numerical values for datapoints to make it clear
what the data could look like.

Solution: Suppose we have a dataset which consists of characteristics of houses and the prices of the
houses. The goal of running linear regression on that dataset may be to predict the prices of houses for
which we know the characteristics. (Alternatively: the goal might be to understand the relationship between
the characteristics of a house and its price.) The training set might look like this:

Number of floors Surface area Price

House 1 1 1,000 1,200,000

House 2 2 800 700,000

House 3 1 500 600,000

Marking scheme: 1 point for a dataset, 2 points for a numerical example that makes sense, 2 points
for stating a sensible goal.

Part (b) [10 marks]

Describe how you would obtain the parameters of the linear regression and how you would use those
parameters to obtain predictions for new data. You do need to give details such as the cost function, but
you do not have to give the details of Gradient Descent.

Solution: we need to obtain the parameters of the linear regression θ, where y ≈ θTx. In the example
above, y is the price and x is the vector that contains the characteristics of a house, for one house. To do
that, we need to obtain the θ̂ that minimizes the cost function∑

i

(θ̂Tx(i) − y(i))2.

Here, (x(i), y(i) are the characteristics of the i-th input and the output for the i-th input in the training
set, respectively. The cost function could be minimized using gradient descent, or using calculus by setting
the derivative of the cost function with respect to θ̂ to 0.

Once the θ̂ that minimizes the cost function is obtained, we can use it to obtain predictions for new
inputs x using ŷ = θ̂Tx.

Marking scheme: 4 points for the cost function, 2 points for saying that it needs to be minmized. 4
points for saying how to use the argmin of the cost function to make new predictions.
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Question 2. [20 marks]

Part (a) [10 marks]

Draw the typical learning curves for the training and the validation set when training a neural network
using stochastic gradient descent. Plot the cost on the y-axis and the iteration number on the x-axis. List
the properties of the learning curves that you were trying to demonstrate in your sketch. Make sure to
demonstrate all the properties that you would typically observe.

Solution:
A sample sketch is shown below.
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Here are some features to point out:

• The validation performance is worse than the training performance

• The performance on the training set generally is increasing

• The performance starts out being the same

• The graph is jittery because the gradient descent is stochastic (in fact, the jitter is somewhat corre-
lated in the training and the validation curves because if we do worse on the training set we likely
also aren’t doing well on the validation data, but this is not shown on this graph (note: people are
not expected to say this))

• The performance on the validation set goes up during later iterations, and then stabilizes somewhat
above the training performance.

Marking scheme: 2 points per property (if a property is obvious in the graph, don’t deduct points).
1/2 points for the last property if the validation cost keeps going up for larger iterations. Other reasonable
properties could be considered.
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Part (b) [10 marks]

Draw the graphs of the performance when applying k-Nearest Neighbours on the training and validation
sets (on the y-axis) versus k (on the x-axis) that you would typically observe. List the properties of the
graphs that you were trying to demonstrate in your sketch. Make sure to demonstrate all the properties
that you would typically observe.

Solution:
A sample sketch is shown below.
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Here are some features to point out:

• The validation performance is worse than the training performance

• The performance on the training set starts at 100% for k = 1

• There is a maximum of the performance attained by the validation set for some k

• For the training set, the performance stabilizes on the proportion of the training set that the plurality
element occupies

• The maximum perofrmance for the validation set is near the local maximum of the perofrmance for
the training set

• The performance keeps decreasing with k after a certain point

Marking scheme: 2.5 points per property (if a property is very obvious in the graph, don’t deduct
points). Other reasonable properties could be considered. Note that there are 6 properties listed.
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Question 3. [20 marks]

You are given a Python function def f(X) which you can call, but whose source code you cannot look at.
The function takes in a 42-dimensional NumPy array and returns a float. Write Python code that finds
and prints a local maximum of the function f using Gradient Descent.

Solution: The idea here is to use finite approximation to compute the gradient, and to then follow
the gradient. An implementation (together with a sample run) is below.

def grad(f, x):

h = 0.0001

grad = zeros(x.shape)

for i in range(len(x)):

xih = x.copy()

xih[i] += h

grad[i] = (f(xih)-f(x))/h

return grad

def grad_ascent(f, init_guess):

EPS = 0.0001

alpha = 0.01

prev_val = 0

cur_guess = init_guess.copy()

while linalg.norm(f(cur_guess)-prev_val) > EPS:

prev_val = f(cur_guess)

g = grad(f, cur_guess)

cur_guess += alpha * g

print cur_guess, f(cur_guess)

return cur_guess

def f(x):

return 50*x[2] + 100*x[0] + -x[2]**2 + x[1] - 5 - x[0]**2 - x[1]**2

print grad_ascent(f, array([0.1,0.02 ,0.05]))

Marking scheme: 10 points for computing the gradient (another option, which involves moving
coordinate-by-coordinate, is okay), 10 points for gradient ascent. -3 points for doing descent instead. 2-3
points for minor substantive mistakes (e.g., -2 points for no stopping condition that makes sense). Synax
errors are OK.
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Question 4. [20 marks]

Consider the Convolutional Neural Network below.

𝑥1 … …𝑥20 𝑥119… … … … … … …

CONV1 (1 feat. Map)

MEDIANPOOL1

FC1 (20 units)

z

𝑊𝐶

𝑊𝑀

𝑊𝐹

stride: 1, filter size: 2x1, pad: 1  

stride: 3, spatial extent: 3 

The network takes in an input of dimension 119 × 1, and its output is of dimension 1 × 1. The network
consists of the input layer X (with a 0-pad of witdth 1), a convolutional layer CONV1 which consists of one
feature map with a 2×1 filter which uses the ReLU nonlinearity, a median-pooling layer MEDIANPOOL1,
a fully-connected layer FC1 which uses a ReLU nonlinearity, and an output layer Z of size 1× 1, which is
fully connected to the FC1 layer and uses a sigmoid nonlinearity. Recall that σ′(t) = σ(t)(1− σ(t)).

Denote the weight that connects the i-th unit in FC1 to Z by WF
i and the bias for Z by bF . Denote

the weight that connects the j-th unit in MEDIANPOOL1 to the i-th unit in FC1 by WM
ji and the bias of

the i-th unit in FC1 by bMi . Let WC = [WC
1 ,W

C
2 ] and the bias for the CONV1 layer be bC .

A unit in a median-pooling layer outputs the median value of the neurons in its receptive field (i.e., the
neurons connected to the unit).

Part (a) [4 marks]

How many parameters (i.e., values that specify how the network computes its output) are there in this
network? Briefly show your work.

Solution: 2 weights and 1 bias for WC , plus (120/3) × 20 + 20 weights/biases in WM , plus 20 + 1
weights/biases in WF , for a total of 844.

Marking scheme: 2 points for computing almost the right number for WM , 1 point each for other
stuff.
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Let the training set inputs beX = [X(1), X(2), ..., X(N)] and the expected outputs be Y = [Y (1), Y (2), ..., Y (N)].
Let the outputs of the layers in the network be denoted using c(X(i)), m(X(i)), f(X(i)), and z(X(i))

for the CONV1, MEDIANPOOL1, FC1, and Z layers, respectively (you may use notation such as zi, fj ,
etc.). You may use those without explicitly telling us how to compute them.

The cost function is

cost(X,Y ) =
∑
n

cost(X(n), Y (n)) =
∑
n

(−Y (n) log(z(X(n)))− (1− Y (n)) log(1− z(X(n))).

Part (b) [8 marks]

Compute ∂Cost/∂WM
ji , for a single training case (x, y) = (X(1), Y (1)). Show the details of the computation.

Use Backpropagation to obtain the final answer: show how you would compute the gradients layer-by-layer.
Solution:

∂Cost

∂z
= (−y/z + (1− y)/(1− z))

∂Cost

∂fi
=
∂Cost

∂z

∂z

∂fi
=
∂Cost

∂z
WF

i z(1− z)

∂Cost

∂WM
ji

=
∂Cost

∂fi

∂fi

∂WM
ji

=
∂Cost

∂fi
[fi > 0]mj

Here, [a > 0] is 1 if a > 0, and 0 otherwise.

Marking scheme: 1 for the cost derivative, 2 for the derivative wrt f, 2 for the derivative wrt WM ,
2 for ReLU derivative, 1 for putting it all together layer-by-layer.
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Part (c) [8 marks]

Compute ∂Cost/∂WC
1 , for a single training case (x, y) = (X(1), Y (1)). Show the details of the computation.

Note: the padding is significant. Use Backpropagation to obtain the final answer: show how you would
compute the gradients layer-by-layer.

Solution: Continuing on from Part (b):

∂Cost

∂mj
=
∂Cost

∂fi

∂fi
∂mj

=
∂Cost

∂fi
[fi > 0]WM

ji

Now we need
∂mj

∂ck
. To compute it, we have to see that ck influences mj iff ck is the median of the triple

of values to which it belongs.
So we have

∂mj

∂ck
=


0, k /∈ [3j, 3j + 1, 3j + 2]

0, k ∈ [3j, 3j + 1, 3j + 2] and ck != median([c3j , c3j+1, c3j+2])

1, otherwise

Now, we have, using the multivariate chain rule,

∂Cost

∂ck
=
∑
j

∂Cost

∂mj

∂mj

∂ck

(Note that we didn’t have to have the sum, it was just convenient.)
Now, using the multivariate chain rule again, we have

∂Cost

∂WC
1

=
∑
k

∂Cost

∂ck

∂ck
∂WC

1

Finally,

∂ck
∂WC

1

= [ck > 0]xk+1

(Assuming that we index c using 0-based indexing.)
vspace.1in
Marking scheme: 3 points for differentiating through the median, 3 points for differentiatin through

conv, 2 points for putting it all together.
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Question 5. [15 marks]

A coin is flipped 100 times, and the results (1’s and 0’s) are stored in the array flips. The result of a
flip is 1 with probability θ, and 0 with probability 1− θ. We have the prior belief that θ ∼ N(0.5, 0.152).
Recall that the Gaussian pdf is

f(x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Part (a) [5 marks]

Write Python code to obtain the Maximum Likelihood estimate of θ given the training set flips.

Solution: From lecture, the ML estimate is just the average of flips. (People who said do gradient
descent on the likelihood and specified the Binomial likelihood are correct too)

np.mean(flips)

Marking scheme: Hard to get part marks here. If the solution is partly right, part marks should be
awarded.

Part (b) [10 marks]

Write Python code to obtain the Maximum A-Posteriori estimate of θ given the training set flips.

Solution: Several possibilities here, including optimizing the posterior using gradient descent. We’ll
do what we did in lecture.

def g(x, mu, sigma):

return exp( (-(x-mu)**2)/(2*sigma**2))

def lik(flips, theta):

return (theta**sum(flips))*((1-theta)**(len(flips)-sum(flips)))

flips = [0, 0, 1, 1, 0, 1, 0, 1, 1, 1]

mu = 0.5

sigma = 0.15

theta = arange(0, 1, 0.01)

posterior = g(theta, mu, sigma)*lik(flips, theta)

print theta[argmax(posterior)]

Marking scheme: 2 points for either trying to find the best posterior using optimization or using
grid search. 2 points for computing the likelihood of the data. 6 points for putting it all together.
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Question 6. [10 marks]

For what kind of dataset does the expected performance on the test set of k-Nearest Neighbours always
grow as k grows? Describe a way to randomly generate that kind of dataset (use pseudocode or Python).
The dataset should have two possible labels (i.e., y = 0 or y = 1).

Solution: The assumption behind k-means is that if two points are close together, they are likely to
have the same labels. If that assumption is incorrect, k-means would not work, and the best we can hope
for is to just guess according to which element is the majority element. Doing anything else will just overfit
on the training set, producing worse performance on the test set in expectation, assuming that there is a
majority label which we could always select.

The easiest way to generate the dataset is

for i = 1, 2, 3, 4, 5, ..., N

Generate random 2D coordinates X[i],

Assign a random label Y[i] to them with probability 60\%

Marking scheme: Full marks for solutions that evince understanding of the assumptions behind k-
NN. 5 points for generating sets that work without explaining that in general what you need is a dataset
that violates the assumptions of k-NN.
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Additional page for answers
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