Markov Chain Monte Carlo

Slides from Geoffrey CSC411: Machine Learning and Data Mining, Winter 2017
Hinton and lain Murray Michael Gulerzhoy

Motivation

* Want to estimate)., nety,(x)P(W'|data)

* Strategy: pick W’ randomly according to
P(W’|data), and average all the net,r(x) we get

 Sampling W’ according to P(W’[data) is hard!
* For most W/, P(W'|data) is basically equal to O

* Hard to find the W’ for which P(W'|data) is not equal
to0

* Those are the W’ we should pick!

Metropolis Algorithm

* Goal: obtain samples from P(0)
e le., obtain 66D @G+ 9(s+m) that are distributed according
to P(0)
Metropolis Algorithm
e 9'~q(0';00)) (Obtain a proposed 6')
e Simplest q normal distribution around 6. g must be symmetric:
a(6';619)=9(6%; "
 if accept:
. 9(5+1) Py
e else:
e 9B+ p(s)

« With Prob(accept) = min (1’ %)
« P*(0) x P(6)

* For Neural Networks, this is proportional to P(W|data) -- canignore the
denominator

Metropolis Intuition

Prob(t) = min| 1 P6)
roo\accep = min ,P*(H(S))
e Tries to perturb %) and see if the new 8’ isn’t
ikely PO gt tIf it
more likely « IO it is, accept. If it’s

not, accept with a lower probability

 Makes sure that if 8(5) is sampled according to
P(6), 06*D is as well

Metropolis Intuition

* For large s (i.e., after many steps), P(H(S)) is likely
large

e Infact 06D, . 9G+M) |g0ks like it’s sampled
according to P(6(5)

* The Metropolis Algorithm is an example of a Monte
Carlo Markov Chain (MCMC) algorithm

Illustration

0" ~ q(6';6"))

if accept:
glstl) g

else:
gls+1l) . g(s)

@) 0)
P(accept) = min (1, (00 (07 00)

Adding the g is a
\ggneralization

6

Sampling weight vectors

* In standard backpropagation
we keep moving the weights in

the direction that decreases
the cost.
* |.e. the direction that

Increases the log
likelihood plus the lo

rior, summed over all
raining cases.

« Eventually, the
weights settle into a
local minimum or get
stuck on a plateau or O
{ust move so slowly
hat we run out of
patience.

One method for sampling weight vectors

. Suppose we add saome
?13|an noise to the
t vector after each

. So the We,ght vector
never settlés down.

o |t keeps wanderin

aro%l ol but It ten
efer o cost reglons of

ewelg space.

’ %ﬁé‘uvtvﬁ SVS‘%PQ?{W'%

visit each possib
setting o ewelghts

