
Recurrent Neural Networks (RNN)

CSC411: Machine Learning and Data Mining, Winter 2017

Michael Guerzhoy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Some slides from Richard Socher,
Geoffrey Hinton, Andrej Karpathy

Motivating Example: Language Models

• Want to assign probability to a sentence
• “Dafjdkf adkjfhalj fadlag dfah” – zero probability

• “Furiously sleep ideas green colorless” – very low
probability

• “Colorless green ideas sleep furiously” – slightly higher

• “The quick brown fox jumped over the lazy dog” – even
higher

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

Application for Language Models

• Applications
• OCR gives several hypotheses, need to choose the most

probable one

• Choose a plausible translation from English to French

• Complete the sentence “A core objective of a learner is
to generalize from its […]”

• In every case, a language model can be used to
evaluate all the possible hypotheses, and select the
one with the highest probability

Sentence Completion

• Suppose a language model M can compute
𝑃𝑀 𝑤1, 𝑤2, … , 𝑤𝑘

• For an incomplete sentence 𝑤1 𝑤2 𝑤3…𝑤𝑘−1, find
𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑘

𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑘) to complete the
sentence

• Now, fix 𝑤𝑘 , and find
𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑘+1

𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑘 , 𝑤𝑘+1)

Probabilistic Sentence Generation

• 𝑃 𝑤𝑘 𝑤1, 𝑤2, …𝑤𝑘−1 =
𝑃(𝑤1 …𝑤𝑘−1𝑤𝑘)

𝑃(𝑤1…𝑤𝑘−1)
∝ 𝑃 𝑤1 … 𝑤𝑘−1𝑤𝑘

• Choose word 𝑤(𝑗) according to
exp(𝛼 ෠𝑃 𝑤1𝑤2…𝑤𝑘−1𝑤

(𝑗))

σ𝑗 exp(𝛼 ෠𝑃 𝑤1𝑤2…𝑤𝑘−1𝑤
(𝑗))

• (Question: Higher 𝛼 => ?)

• Generally, take ෠𝑃 to be the input to the softmax that produces the
probability in the RNN (better), or simply the probability of the sentence

Generating “Shakespeare”
character-by-character with RNN

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

(Here, the w’s are characters, not words)

Generating Strings with Finite State Machines

A B

E

Generating Strings with Finite State Machines

A B

E

ABAAEEAAEABEEEEEAAABEEAAB – Not allowed
AABEA – Allowed
ABBA – Not allowed

Markov Models: Probabilistic Finite State Machines

A B

E

0.9

0.1

0.5

0.5

0.8

0.2

Markov Models: Probabilistic Finite State Machines

A B

E

0.9

0.1

0.5

0.5

0.8

0.2

𝑃 𝑤𝑘 = 𝐴 𝑤𝑘−1 = 𝐸 = 0.8

𝑃 𝑤𝑘 = 𝐵 𝑤𝑘−1 = 𝐵 = 0

A More Complicated FSM

• Suppose our alphabet is {“a”, “b”, “c”, “e”, “i”}

• Encode the rule:
“i” before “e,” except after “c”

(think “receive,” “believe,” “deceit”…)

Recurrent Neural Networks

𝑥𝑡-the tth character of the string (“the character at time t”)
ℎ𝑡-the tth character of the string (“the character at time t”)

ො𝑦𝑡
ො𝑦𝑡+1

RNN for Language Modelling

• Given a list of word vectors (e.g., one-hot
encodings of words) 𝑥1, … , 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑇
At a single time step:
• ℎ𝑡 = 𝜎 𝑊 ℎℎ ℎ𝑡−1 +𝑊 ℎ𝑥 𝑥𝑡
• ො𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑆 ℎ𝑡)

• ෠𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥1, 𝑥2, … , 𝑥𝑡 = ො𝑦𝑡,𝑗

• ℎ is the state (e.g., the previous
word vector could be part of ℎ)

• 𝑥𝑡 is the data

• ො𝑦𝑡 is the predicted output

ො𝑦𝑡 ො𝑦𝑡+1

ℎ𝑡 = 𝜎 𝑊 ℎℎ ℎ𝑡−1 +𝑊 ℎ𝑥 𝑥𝑡
ො𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊 𝑆 ℎ𝑡
෠𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥1, 𝑥2, … , 𝑥𝑡 = ො𝑦𝑡,𝑗

𝑥𝑡 – the input (one-hot) at t

ො𝑦𝑡 - predictions (vector of probs) at t

Cost Function

• Same as before: negative log-probability of the
right answer:

𝐽(𝑡) = −σ𝑗=1
𝑉 𝑦𝑡,𝑗 log ො𝑦𝑡,𝑗

𝐽 =෍

𝑡

𝐽(𝑡)

• ො𝑦𝑡,𝑗 = 1 iff 𝑥𝑡+1 = 𝑣𝑗

RNN “=“ feedforward net with shared weights

w3 w4

w1 w2w3 w4

w1 w2w3 w4

w1 w2w3 w4

time=0

time=2

time=1

time=3

Assume that there is a
time delay of 1 in using
each connection.

The recurrent net is just
a layered net that keeps
reusing the same
weights.

Reminder: Multivariate Chain Rule

𝑓1(𝑥) 𝑓2(𝑥)

𝑥

𝑓3(𝑥)

𝑔(𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥) 𝜕𝑔

𝜕𝑥
= σ

𝜕𝑔

𝜕𝑓𝑖

𝜕𝑓𝑖
𝜕𝑥

Gradient

•
𝜕𝐽

𝜕𝑊
= σ𝑡

𝜕𝐽(𝑡)

𝜕𝑊

•
𝜕𝐽(𝑡)

𝜕𝑊
=σ𝑘=1

𝑡 𝜕𝐽(𝑡)

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊
= σ𝑘=1

𝑡 𝜕𝐽(𝑡)

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊

RNN Gradient

•
𝜕𝐽

𝜕𝑊
= σ𝑡

𝜕𝐽(𝑡)

𝜕𝑊

•
𝜕𝐽(𝑡)

𝜕𝑊
=σ𝑘=1

𝑡 𝜕𝐽(𝑡)

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊
=

σ𝑘=1
𝑡 𝜕𝐽(𝑡)

𝜕 ො𝑦𝑡

ො𝑦𝑡

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊

ො𝑦𝑡 = ℎ𝑡

time=0

time=2

time=1

time=3

Vanishing and Exploding Gradient

•
𝜕𝐽(𝑡)

𝜕𝑊
=σ𝑘=1

𝑡 𝜕𝐽(𝑡)

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊
= σ𝑘=1

𝑡 𝜕𝐽(𝑡)

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑊

•
𝜕ℎ𝑡

𝜕ℎ𝑘
= ς𝑗=𝑘+1

𝑡 𝜕ℎ𝑗

𝜕ℎ𝑗−1

• Assume 1-d h’s
• In fact, they are vectors

• Often,
𝜕ℎ𝑗

𝜕ℎ𝑗−1
< 1 for all j or

𝜕ℎ𝑗

𝜕ℎ𝑗−1
> 1 for all j

• They are all related by the same weight to each other

• This means that
𝜕ℎ𝑡

𝜕ℎ𝑘
is either very close to 0 (vanishing

grad.) or very large (exploding grad.) for large |𝑡 − 𝑘|

Vanishing Gradient is a Problem

Problem: if the gradient
vanishes, we can’t figure
out that the weight
needs to be changed
because of what’s
happening at time=0 to
make the cost function at
time=n smaller

time=0

time=2

time=1

time=3

Exploding Gradient is a Problem

• Why?

• “Hacky” solution: clip the gradients

Vanishing Gradient in Language Models

• In the case of language modeling or question
answering words from steps far away are not taken
into consideration when training to predict the next
word

• Example:
Jane walked into the room. John walked in too. It
was late in the day. Jane said hi to ____

Visualizing the hidden state*

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

*The RNN there is somewhat more complicated than what we saw so far

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

Karpathy et al. “Visualizing and Understanding Recurrent Networks”
http://arxiv.org/abs/1506.02078

