Intro to Optimizing Neural Networks

"Oh sure, going in that direction will totally minimize the objective function" — Sarcastic Gradient Descent.

6:46 PM - 20 Jul 2012

241 Retweets 75 Likes
The Surface Error For Neural Networks

- The error surface lies in a space with a horizontal axis for each weight and one vertical axis for the error.
 - For a linear neuron with a squared error, it is a quadratic bowl.
- For multi-layer, non-linear nets the error surface is much more complicated.
 - But locally, a piece of a quadratic bowl is usually a very good approximation.
Convergence speed of full batch learning when the error surface is a quadratic bowl

• Going downhill reduces the error, but the direction of steepest descent does not point at the minimum unless the ellipse is a circle.
 • The gradient is big in the direction in which we only want to travel a small distance.
 • The gradient is small in the direction in which we want to travel a large distance.

Even for non-linear multi-layer nets, the error surface is locally quadratic, so the same speed issues apply.
How Learning Goes Wrong

- If the learning rate is big, the weights slosh to and fro across the ravine.
 - If the learning rate is too big, this oscillation diverges.
- What we would like to achieve:
 - Move quickly in directions with small but consistent gradients.
 - Move slowly in directions with big but inconsistent gradients.
Mini-Batch Stochastic Gradient Descent

• Instead of minimizing the cost function
 \(\sum_{i=1}^{M} C(y^{(i)}, f_{\theta}(x^{(i)})) \), make a step along the gradient with respect to just a few examples
 • Repeat:
 • Select random mini-batch \(S \) of training examples (size e.g. 50, but could be 1)
 • \(\theta \leftarrow \theta - \alpha \frac{\partial}{\partial \theta} \sum_{i \in S} C(y^{(i)}, f_{\theta}(x^{(i)})) \)
 • (Perhaps) helps avoid bad local minima because the direction of the current gradient changes all the time
 • (Note: in deep neural networks, we’re not so worried about bad minima)
 • Don’t need to store all the data in RAM
 • Useful a lot of the time!
 • Minibatches need to be balanced for class
 • If a minibatch only contains images of class “Radcliffe,” the network might decide to always output “Radcliffe” after the gradient update
 • Smaller alphas/smaller minibatches also help
Adjusting the α

- Idea: have each weight have its own individual α
- Set the so αs that the optimization makes sense (i.e., if gradient updates make things worse, make α smaller, if they make it better, make α larger)
rmsprop

- Keep a moving average of the squared gradient for each weight:

\[
\text{MeanSquare}(w, t) = 0.9 \text{MeanSquare}(w, t - 1) + 0.1 \left(\frac{\partial E}{\partial w}(t) \right)^2
\]

- Divide the gradient by \(\sqrt{\text{MeanSquare}(w, t)}\)
Weight Initialization

• Extremely important for Multilayer Neural Networks!
• \textit{Not} all zeros
 • If all the neurons in a layer are the same, they can only change in the same direction by the same amount
• Small random numbers
 • \textit{Not} too small, since that might cause the gradient to be small
 • Called “symmetry breaking”
 • Good enough for CSC411
• Heuristic: random numbers that depend on the number of incoming weights:
 • $w \sim N(0,1)/\sqrt{n}$. This makes the inputs to all the units initially be on approximately the same scale
• Can set biases to 0
 • Symmetry breaking provided by the weight initialization
Everyone is all big data this and online that. My methods are small batch: they only handle a few instances but really look at them, y'know?

6:28 PM - 16 Aug 2012