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ConVOIUtion Layer Filters always extend the full
S depth of the input volume

32x32%x3 image /
ox5x3 filter
32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
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Convolution Layer

_—— 32x32x3 image
5x5x3 filter w

e

1 number:

=
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias’
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32X32X3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map
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32x32X3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps
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activation maps
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Convolution Layer

32 28
3 6

We stack these up to get a "new image” of size 28x28x6!



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N




Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters In this layer?
each filter has 5*5*3 + 1 = /6 params (+1 for bias)

=> 7610 =760



Convolutional Layer

» Accepts a volume of size W; x H; x D,
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride S,
o the amount of zero padding P.
 Produces a volume of size W x Hy x Dy where:
o Wo=(W, —F+2P)/S+1
o Hy = (Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° Dg =K
« With parameter sharing, it introduces F - F' - Dy weights per filter, for a total of (F' - F' - Dy ) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size Wy x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

o

o

o



Convolutional Layers Summary Again

Common settings:

Summary. To summarize, the Conv Layer:

K = (powers of 2, e.g. 32, 64, 128, 512)
Accepts a volume of size W; x H; x Dy « Fe3i Be=i P=1
Requires four hyperparameters: - = o
o Number of filters K, = FeE8.8=1,P=2 :
o their spatial extent F', = Fegy =i, =] (Whatever fItS)
o the stride S, - F=1,S=1,P=0
o the amount of zero padding P.

Produces a volume of size Wy x Hy x D5 where:

o Wo=(W, —F+2P)/S+1

o Hy = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° D2 = I
With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - D) - K weights
and K biases.
In the output volume, the d-th depth slice (of size Wy x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
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(1x1 convolutions?)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56
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Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

“eature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hubel & Weisel featural hierarchy
topographical mapping

@ high level
@ mid level
D

complex cells

simple cells




Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

> B 112
224 downsampling

224

y
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Pooling Layer

Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size W5 x Hy x Dy where:
o Wo=(W; —F)/S+1
° H2 :(H1 —F)/S+1
© D2 = Dl
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Common settings:

F
F

I
W N
0w

I

2
2
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Fully-Connected Layer

* Contains neurons that connect to the entire lower
year, as in ordinary neural networks

RELU RELU RELU RELU RELU RELU
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LeNet-5 (Yann LeCun et al, 1998)

C3:1. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28 f
3232 S2:f. maps C5 layer F6 layer ohrrpu‘r
I

6@14x14
| I Full coanecﬁon ‘ Gaussian connections
Convolutions Subsampling Cornvolutions  Subsampling Full connection

r
"

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
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LeNet-5 errors
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LeNet Performance

Error Rate (%)

Test error (no distortions)

) o
d.8
‘“‘x Test error

oL (with distortions)
0.4 P
_-
2.2 b Training error (no distortions)
0 L L Il L 1 L L 1 L J
0 10 20 30 al a0 ED Tl BO 11 LOog

Training Set Size (x1000)

18



IMZAGE Large Scale Visual Recognition Challenge

* About one million images, 1000 object categories in
the training set

* Task: what is the object in the image
* |.e., classify the image into one of 1000 categories

* Evaluation: is one of the best 5 guesses correct?



motor scooter

fire engine | dead-man's-fingers

motor scooter ~
black widow | lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golifcart Egyptian cat
. o
9(‘ e musnroom
vertible agaric
grille mushroom
pickup jelly fungus
beach wagon gill fungus
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Human Performance on ImageNet

e http://karpathy.github.io/2014/09/02/what-i-
learned-from-competing-against-a-convnet-on-
imagenet/

* 5.1% error (i.e., none of the 5 guesses the person
makes are correct)

* Try it yourself!
e http://cs.stanford.edu/people/karpathy/ilsvrc/
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http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://cs.stanford.edu/people/karpathy/ilsvrc/

Dogs Are Hard to Classify!
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AIexNet (Krizhevsky et al. 2012)

R 7 I k% 58 7048 /zma dense
oy 128 e — —
13 \
\.' e
N 3 1_3« dense densa
1, 10
192 162 128 Max - |
Max 198 Max pooling £° 2048
pooling pooling
Full (simplified) AlexNet architecture: Details/Retrospectives:
[227x227x3] INPUT - first use of ReLU
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2 - used Norm layers (not common anymore)
[27x27x96] NORM1: Normalization layer - heavy data augmentation
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 _ dropout 05
[13x13x256] MAX POOL2: 3x3 filters at stride 2 batch si 128
[13x13x256] NORM2: Normalization layer - balcn size
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 - SGD Momentum 0.9
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 _ Learning rate 1e_21 reduced by 10

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1 I h | lat
[6x6x256] MAX POOL3: 3x3 filters at stride 2 manually wnen val accuracy plateaus

[4096] FC6 4096 neurons - L2 weight decay 5e-4

[4096] FG7: 4096 neurons -7 CNN ensemble: 18.2% -> 15.4%:3
[1000] ~C&: 1000 neurons (class scores)



GoogleNet (Szegedy et al, 2014)

* 6.7% error on ImageNet
 State of the Art (at the time)
* Close to human performance

* Avery deep net
e Several Neat Tricks



A Heterogeneous Set of Convolutions

A number of
filters — 1 1
X Filter
concatenation
-l S 3X3 1x1 3x3 5x5
convolutions convolutions convolutions

E— T~

Previous layer

* Apply filters of several sizes so as to capture invariances at different scales
* Concatenate all the filters
* (Note: could always use 5x5 filters, but that’s expensive, and hard to learn)

25



Inception Module: Basic Idea (doesn’t work, too many features)

Filter
concatenation

P

1x1 3x3 5x5 3x3 max
convolutions convolutions convolutions pooling

Previous layer

* Do max-pooling directly too in case convolution not
needed

* Super expensive if we want a decent number of filters
in each layer 26



Inception Module

1x1
convolutions

N

Filter
concatenation

B A

1x1
convolutions

3x3 5x5
convolutions convolutions
3 3
1x1 1x1
convolutions convolutions

A

3x3 max
pooling
— >

Previous layer

—X ___———
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Inception Module

* The 1x1 convolutions at the bottom of the module
reduce the number of inputs by a factor of

depth of input layer

N.of 1x1 convolutions
* Decreases computation cost dramatically



Inception

9 Inception modules

Network in a network in a network...

Convolution
Pooling

Other




Look Closer

Conv Conv Conv
3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

MaxPool
3x3+2(S)

DepthConcat

Conv Conv Conv Conv Conv
1+1(S) 3x3+1(S) 5x5+41(S) 1x1+1(S) 1x1+1(S)

Conv Conv MaxPool AveragePool
1x1+1(S) 1x1+1(S) 3x3+1(S) 5x5+3(V)

* Softmax outputs in the middle of the network, the same as at
the top

* Encourage the network to learn features that are useful for classification in the
middle



Inception

256 480 4380

Width of inception modules ranges from 256 filters (in early modules) to 1024 in top
inception modules.

Can remove fully connected layers on top completely



Inception

256 480 4380

Width of inception modules ranges from 256 filters (in early modules) to 1024 in top
inception modules.

Computional cost is increased by
Can remove fully connected layers on top completelyess than 2X compared to

Krizhevsky’s network. (<1.5Bn
Number of parameters is reduced to 5 million operations/evaluation)



Revolution of Depth

ICCV D
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Research
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152 layers
F3
\
\
\
\ 164
\
\
\ 11.7
22 layers 19 Iayers ]
\ 6.7
3.57 I_ 2 I 8 layers | 8 layers J shallow
ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
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Aside: ConvNets vs. Monkeys

* Extract the features (neuron activities) from the
Inferior Temporal Cortex of Rhesus Macaques when
the monkeys are looking at images

* Extract features from the top layers of ConvNets
when the ConvNets are looking at images

* Use both sets of features to classify images



Deep Neural Networks Rival the Representation of Primate IT
Cortex for Core Visual Object Recognition

Charles F. Cadieu'*, Ha Hong':?, Daniel L. K. Yamins', Nicolas Pinto', Diego Ardila', Ethan A.
Solomon', Najib J. Majaj!, James J. DiCarlo!

1 Department of Brain and Cognitive Sciences and McGovern Institute for Brain
Research, Massachusetts Institute of Technology, Cambridge, MA 02139

2 Harvard-MIT Division of Health Sciences and Technology, Institute for Medical
Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
* E-mail: Corresponding cadieu@mit.edu
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