Understanding How ConvNets See

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

Slides from Andrej Karpathy

CSC411: Machine Learning and Data Mining, Winter 2017

Michael Guerzhoy
What Does a Neuron Do in a ConvNet? (1)

• A neuron in the first hidden layer computes a weighted sum of pixels in a patch of the image for which it is responsible

What Does a Neuron Do in a ConvNet? (2)

• For Neurons in the first hidden layer, we can visualize the weights.

Example weights for fully-connected single-hidden layer network for faces, for one neuron

Weights for 9 features in the first convolutional layer of a layer for classifying ImageNet images

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”
What Does a Neuron Do in a ConvNet? (3)

- The neuron would be activated the most if the input looks like the weight matrix.
- These are called “Gabor-like filters”.
- The colour is due to the input being 3D. We visualize the strength of the weight going from each of the R, G, and B components.
What Does a Neuron Do in a ConvNet (4)

• Another to figuring out what kind of images active the neuron: just try lots of images in a dataset, and see which ones active the neuron the most

For each feature, fine the 9 images that produce the highest activations for the neuron, and crop out the relevant patch

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”
Aside: Relevant Patch?

- Each neuron is affected by some small patch in the layer below
- Can recursively figure out what patch in the input layer each neuron is affected
- Neurons in the top layers are affected by (almost) the entire image
This allows us to look at layers besides the first one: layer 3
Layer 4
Layer 5
Which Pixels in the Input Affect the Neuron the Most?

• Rephrased: which pixels would make the neuron not turn on if they had been different?
• In other words, for which inputs is \(\frac{\partial \text{neuron}}{\partial x_i} \) large?
Assume that for the particular image $x, h_2 > h_3$

$$\text{relu}(x) = \begin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{cases}$$

$$s_1 = \sum_{i=1}^{2} W^{(i)} x_i$$

$$s_2 = \sum_{i=1}^{2} W^{(i)} x_{i+1}$$

$$\frac{\partial h_3}{\partial x_3} = \begin{cases} W^{(1)}, & s_2 > 0 \\ 0, & o/w \end{cases}$$

$$\frac{\partial h_3}{\partial s_2} = \begin{cases} W^{(2)}, & s_2 > 0 \\ 0, & o/w \end{cases}$$

$$\frac{\partial h_3}{\partial h_2} = 1 \text{ if } h_1 < h_2$$

$$\frac{\partial h_3}{\partial \text{relu}_2} = \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial \text{relu}_2} = \begin{cases} 1, & s_2 > 0 \\ 0, & o/w \end{cases}$$
Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:
Typical Gradient of a Neuron

- Mostly zero away from the object, but the results are not very satisfying.
- Every pixel influences the neuron via multiple hidden neurons. The network is trying to detect kittens everywhere, and the same pixel could fit a kitten in one location but not another, leading to its overall effect on the kitten neuron to be 0.

(Explanation on the board)
“Guided Backpropagation”

- Idea: neurons act like detectors of particular image features
- We are only interested in what image features the neuron detects, not in what kind of stuff it doesn’t detect
- So when propagating the gradient, we set all the negative gradients to 0
 - We don’t care if a pixel “suppresses” a neuron somewhere along the part to our neuron
Assume that for the particular image \(x \), \(h_2 > h_3 \)

\[
relu(x) = \begin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{cases}
\]

\[
s_1 = \sum_{i=1}^{2} W^{(i)} x_i
\]

\[
s_2 = \sum_{i=1}^{2} W^{(i)} x_{i+1}
\]

\[
\frac{\partial h_3}{\partial f_2} = \begin{cases} W^{(1)}, & s_2 > 0 \\ 0, & o/w \end{cases}
\]

\[
\frac{\partial h_3}{\partial s_2} = \begin{cases} W^{(2)}, & s_2 > 0 \\ 0, & o/w \end{cases}
\]

\[
\frac{\partial h_3}{\partial f_3} = \begin{cases} W^{(2)}, & s_2 > 0 \\ 0, & o/w \end{cases}
\]

\[
\frac{\partial h_3}{\partial h_2} = 1 \text{ if } h_1 < h_2
\]
Guided Backpropagation

- Compute gradient, zero out negatives, backpropagate
- Compute gradient, zero out negatives, backpropagate
- Compute gradient, zero out negatives, backpropagate
Guided Backpropagation
Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)
What About Doing Gradient Descent?

• Want to maximize the i-th output of the softmax
• Can compute the gradient of the i-th output of the softmax with respect to the input x (the W’s and b’s are fixed to make classification as good as possible)
• Perform gradient descent on the input
Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)
(A Small Tweak For the Gradient Descent Algorithm)

• Doing gradient descent can lead to things that don’t look like images at all, and yet maximize the output

• To keep images from looking like white noise, do the following:
 • Update the image x using a gradient descent step
 • Blur the image x