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A Diversion: Neural correlates of
interspecies perspective taking in the
post-mortem Atlantic Salmon
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METHODS

Subiect, One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was approximately 18 inches long, weighed 3.8 Ibs, and was not alive at
the time of scanning.

Task, The task administered to the salmon involved completing an open-ended
mentalizing task. The salmon was shown a series of photographs depicting human
individuals in social situations with a specified emotional valence. The salmon was
asked to determine what emotion the individual in the photo must have been
experiencing.

Design, Stimuli were presented in a block design with each photo presented for 10
seconds followed by 12 seconds of rest. A total of 15 photos were displayed. Total
scan time was 5.5 minutes.

Preprocessing, Image processing was completed using SPM2. Preprocessing steps
for the functional imaging data included a 6-parameter rigid-body affine realignment
of the fMRI timeseries, coregistration of the data to a T|-weighted anatomical image,
and 8 mm full-width at half~-maximum (FWHM) Gaussian smoothing.

Analysis, Voxelwise statistics on the salmon data were calculated through an
ordinary least-squares estimation of the general linear model (GLM). Predictors of
the hemodynamic response were modeled by a boxcar function convolved with a
canonical hemodynamic response. A temporal high pass filter of 128 seconds was
include to account for low frequency drift. No autocorrelation correction was
applied.

Voxel Selection, Two methods were used for the correction of multiple comparisons
in the fMRI results. The first method controlled the overall false discovery rate
(FDR) and was based on a method defined by Benjamini and Hochberg (1995). The
second method controlled the overall familywise error rate (FWER) through the use
of Gaussian random field theory. This was done using algorithms originally devised
by Friston et al. (1994).

http://prefrontal.org/files/posters/Bennett- http://www.improbable.com/ig/winners/
Salmon-2009.pdf ’



Two-Layer Neural Networks for
Image Classification

10 objects, all resized to
28x28
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(a.k.a. Multinomial Logistic Regression)



Reminder: Optimizing Neural
Networks

* Use Backpropagation to compute the gradient of the cost
function Fe. ., the —log prob. of the answer) w.r.t. the W’s
and b’s for the whole training set, or for a mini-batch of
training examples

e Use gradient descent to find the W’s and b’s that minimize
the cost function

* When classifying images, compute the output of the
network for

x=the input ima%e
and the W’s and b’s we found minimizing the cost
function

* Find which output is the largest, or interpret the outputs of
thbe softmax as the probability estimates for the different
objects



What kind of W’s would minimize
the cost function?

e E.g., the task is the same as in Project 1: classify an
image as one of the 6 actors



Visualizing the W’s

* For a given output unit, we have the strength of the connections from

each of the inputs
* To understand what the network is doing, we can think of the W

as an image

(1,i,4)
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Multinomial Logistic Regression with Early Stopping, 40 examples each
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The Dot Product W (L*J) . &

* Note that the input to the unit o; is
W(l'*'j) - X _I_ b(l;])

* For a vector x of a given magnitude, W(l'*'f) - X 1S
as large as possible when x = aW (1%J)
e l.e., when x and W (1)) point in the same direction

* (Explanation on the board: the dot product u - v is the
length of the projection of u onto v)

* That means that o; is larger when x looks like w@x1),
viewed as images

* (Note: it also means we should make sure all our input x’s are
of similar magnitudes)



Aside: all the input x’s should have
the same magnitude

e If x(D = ax@ they are basically the same image,
just with different contrast and maximum
brightness

* The output of the neural network for x; and x,
should be the same

 Solution: always normalize any input x before
putting it in the dataset
X

X = —
| x|



Aside: Normalizing Data

e Usually, we also want for the mean of all the entries
inXxto beO

* Helps prevent dead neurons (reminder of why on the
board)

¢ x > (x — mean(x))
* Transformation:
_ x—mean(x)
’ sd(x)
* (Note: for mean(x) = 0,sd(x) = |x|/sqrt(dim(x)))

X



Neural Networks with Hidden Layers

softmax

outputs (one per object)

hidden layer (300
<« | hidden units)

iInput vector (flattened 28x28
image)
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Understanding Hidden Layers

e Can visualize WP like before

* But what does it mean for the input to e.g. hg to be
high?

* Depends on how hg is connected to the output layer!

13



s: array([-0.1032981 , -0.02623156, -0.04492124, 0.04031333, 0.09555781,
0.04314677], dtype=float32)bias: 0.111489

0

10

15

20

25

30

s: array([ 0.03922304, 0.05484759, 0.06025519, 0.02333124, -0.26381665,
0.05690645], dtype=float32)bias: 0.00307018

10

20

25

30

5: array([-0.05847707, 0.02304747, -0.04514949, -0.06355965, 0.02980999,

0.17421021], dtype=float32)bias: 0.0241101

10

15}

20

25

30

s: array([ 0.06559545, -0.14167207, 0.06504502, 0.01543506, -0.14153987,

0.06434423], dtype=float32)bias: 0.0287023
0

10

20

25

30

act = ['Angie Harmon’, 'Peri Gilpin’, 'Lorraine Bracco', 'Michael Vartan', 'Daniel Radcliffe', 'Gerard Butler']

300 hidden units, 6 actors, 40 examples each, L2-penalized
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Hidden Layer Units as Features

* Once we train the neural network, the values units in the
hidden layer should be useful for computing the output
units.

* The weights W° between the input layer and the hidden
layer are such that the hidden units are useful

* Think of the hidden units as “features” of the data —
summaries of the data that are useful for computing the
outputs

* In networks with no hidden layer, we simply compute as
many features as there are outputs

e So the “features” should look like the inputs that we are looking for

* (Recall the XOR example: we computed the feature “x1>.5”
and the feature “x2>.5” using hidden units)



