Learning Deep Neural Networks with Backpropagation

Slides from Geoffrey Hinton

CSC411: Machine Learning and Data Mining, Winter 2017

Michael Guerzhoy

Multilayer Neural Network for Classification

- \(o_i \) is large if the probability that the correct class is \(i \) is high

A possible cost function:

\[
C(o, y) = \sum_{i=1}^{m} |y^{(i)} - o^{(i)}|^2
\]

- \(y^{(i)} \)'s and \(o^{(i)} \)'s encoded using one-hot encoding
Partial Derivatives of the Cost Function

- We need the partial derivatives of the cost function $C(o, y)$ w.r.t all the W and b
- $o_i = g\left(\sum_j W^{(2,j,i)}h_j + b^{(2,i)}\right)$
- Partial derivative of $C(o, y)$ w.r.t $W^{(2,j,i)}$

 \[
 \frac{\partial C}{\partial W^{(2,j,i)}}(x, y, W, b, h, o) = \frac{\partial o_i}{\partial W^{(2,j,i)}}(x, y, W, b, h, o) \frac{\partial C}{\partial o_i}(x, y, W, b, h, o)
 \]

 \[
 = \frac{\partial (\sum_j W^{(2,j,i)}h_j)}{\partial W^{(2,j,i)}}(x, y, W, b, h, o) \frac{\partial g}{\partial (\sum_j W^{(2,j,i)}h_j)}(x, y, W, b, h, o) \frac{\partial C}{\partial o_i}(x, y, W, b, h, o)
 \]

 \[
 = h_j \frac{\partial g}{\partial \sum_j W^{(2,j,i)}h_j}(x, y, W, b, h, o) \frac{\partial C}{\partial o_i}(x, y, W, b, h, o)
 \]

 \[
 = h_j g'\left(\sum_j W^{(2,j,i)}h_j + b^{(2,i)}\right)\frac{\partial}{\partial o_i} C(o, y)
 \]
\[h_j g' \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \frac{\partial C}{\partial o_i} (o, y) \]

- \(g(t) = \frac{1}{1 + \exp(-t)} \)

\[g'(t) = \frac{\exp(-t)}{(1 + \exp(-t))^2} = \frac{1}{(1 + \exp(-t))} \frac{\exp(-x)}{(1 + \exp(-t))} = g(t)(1 - g(t)) \]

- \(C(o, y) = \sum_{i=1}^{N} (o_i - y_i)^2 \)

\[\frac{\partial}{\partial o_i} \sum_{i=1}^{N} (o_i - y_i)^2 = 2(o_i - y_i) \]
\[
\frac{\partial C}{\partial W^{(2,j,i)}}(x, y, W, b, h, o) = h_j g' \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \frac{\partial C}{\partial o_i}(o, y)
\]

\[
= 2h_j g \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \left(1 - g \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \right) (o_i - y_i)
\]
Vectorization

\[
\frac{\partial c}{\partial W^{(2,j,i)}} (x, y, W, b, h, o) = 2h_j g \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \left(1 - g \left(\sum_j W^{(2,j,i)} h_j + b^{(2,j)} \right) \right) (o_i)
\]
More Chain Rule

\[\frac{\partial g}{\partial x} = \sum \frac{\partial g}{\partial f_i} \frac{\partial f_i}{\partial x} \]
\[
\frac{\partial C}{\partial h_i} = \sum_k \left(\frac{\partial C}{\partial o_k} \frac{\partial o_k}{h_i} \right)
\]
\[
\frac{\partial C}{\partial W^{(1,j,i)}} = \frac{\partial C}{\partial h_i} \frac{\partial h_i}{\partial W^{(1,j,i)}}
\]
Backpropagation

\[
\frac{\partial C}{\partial hidB_i} = \sum_k \left(\frac{\partial C}{\partial hidA_k} \frac{\partial hidA_k}{\partial hidB_i} \right)
\]

\[
\frac{\partial C}{\partial W^{(1,j,i)}} = \frac{\partial C}{\partial hidB_i} \frac{\partial hidB_i}{\partial W^{(1,j,i)}}
\]
Back-propagate error signal to get derivatives for learning

Compare outputs with correct answer to get error signal