A Brief Intro to Bayesian Inference

\[
P(A | B) = \frac{P(B | A)P(A)}{P(B)}
\]

Thomas Bayes (c. 1701 – 1761)
Tossing a Coin

• Suppose the coin came up Heads 65 times and Tails 35 times. Is the coin fair?

• Model: \(P(\text{heads}) = \theta \)

• Log-likelihood: \(\log P(data|\theta) = 65 \log \theta + 35 \log(1 - \theta) \)
 • Maximized at \(\theta = .65 \)

• But would you conclude that the coin really is not fair?
Prior Distributions

• We can encode our beliefs about what the values of the parameters could be using $P(\theta)$.

• Using Bayes’ rule, we have

$$P(\theta = \theta_0 | \text{data}) = \frac{P(\theta = \theta_0, \text{data})}{P(\text{data})} = \frac{P(\text{data} | \theta = \theta_0)P(\theta = \theta_0)}{P(\text{data})}$$

$$= \sum_{\theta_1} P(\text{data} | \theta = \theta_1)P(\theta = \theta_1)$$
Maximum a-posteriori (MAP)

• Maximize the *posterior probability* of the parameter:

\[
\arg\max_{\theta_0} \frac{P(\text{data}|\theta = \theta_0)P(\theta = \theta_0)}{P(\text{data})}
\]

\[
= \arg\max_{\theta_0} P(\text{data}|\theta = \theta_0)P(\theta = \theta_0)
\]

\[
= \arg\max_{\theta_0} \log P(\text{data}|\theta = \theta_0) + \log P(\theta = \theta_0)
\]

• The posterior of probability is the product of the prior and the data likelihood

• Represents the *updated* belief about the parameter, given the observed data
Aside: Bayesian Inference is a Powerful Idea

• You can think about anything like that. You have your prior belief $P(\theta)$, and you observe some new data. Now your belief about θ must be proportional to $P(\theta)P(data|\theta)$
 • But only if you are 100% sure that the likelihood function is correct!
 • Recall that the likelihood function is your model of the world – it represents knowledge about how the data is generated for given values of θ
 • Where do you get your original prior beliefs anyway?

• Arguably, makes more sense than Maximum Likelihood
Back to the Coin

• (In Python)
Gaussian Residuals Models

• Log-likelihood:

\[
\log P(\text{data}|\theta) = \sum -\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} - \frac{m}{2}\log(2\pi\sigma^2)
\]

• Suppose we believe that \(P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right) \)
 • I.e., the coefficients in \(\theta \) will generally be in \([-1.5/\lambda, 1.5/\lambda]\)
• \(\log[P(\text{data}|\theta)P(\theta)] \) is \(\log P(\text{data}|\theta) - \lambda|\theta|^2 + \text{const} \)
 (exercise)
• Maximize \(\log[P(\text{data}|\theta)P(\theta)] \) to get the \(\theta \) that you believe the most
Why $P(\theta_i) = N \left(0, \left(\frac{1}{2\lambda} \right) \right)$

- More on this later
- If the θ_i’s are allowed to be arbitrarily large, the ratio of the influences of the different features over the decision boundary could be arbitrarily high
 - Difficult to believe that one of the features still matters, but it matters a 10000000 times less than some other feature
 - Easy to believe a feature doesn’t matter at all, though
 - Only reasonable if the inputs are all on the same scale, and the output is on roughly the same scale as the inputs
 - Mostly when we fit coefficients, they don’t get crazy high, so it’s a reasonable prior belief