Linear Regression

CSC411: Machine Learning and Data Mining, Winter 2017

Michael Guerzhoy

Slides from:

Andrew Ng

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
	1534	315
	852	178
	•••	

Notation:

m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

y's = "output" variable / "target" variable

How do we represent *h* ?

- We represent hypotheses about the data using the parameters $\theta = (\theta_0, \theta_1)$
- If the data is correctly predicted according to hypothesis h_{θ} , then $y \approx h_{\theta}(x) = \theta_0 + \theta_1 x$
- The learning algorithm finds the best hypothesis h_{θ} for the training set
- We can then estimate the values of y for the test set using that h_{θ}
- If $h_{\theta}(x)$ is a linear function of a real number x, this procedure is called linear regression.

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
nunnig set	2104	460
	1416	232
	1534	315
	852	178
	•••	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters
How to choose θ_i 's ?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x, y) Quadratic cost function - on the board

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
Parameters: θ_0, θ_1 Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal:

 $\underset{\theta_{0},\theta_{1}}{\operatorname{minimize}} J(\theta_{0},\theta_{1})$

Cost Function Surface Plot

Contour Plots

- For a function F(x, y) of two variables, assigned different colours to different values of F
- Pick some values to plot
- The result will be *contours* curves in the graph along which the values of F(x, y) are constant

Cost Function Contour Plot

$$h_{\theta}(x)$$

$$J(\theta_0, \theta_1)$$

(for fixed θ_0, θ_1 , this is a function of x)

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient Descent on the board

For Linear Regression, J is bowl-shaped ("convex")

Gradient Descent Example

Linear Regression vs. k-Nearest Neighbours

1-Nearest Neighbor Classifier

Linear Regression of 0/1 Response

Orange: y = 1 Blue: y = 0 15-Nearest Neighbor Classifier

Linear Regression vs. k-Nearest Neighbours

- Linear Regression: the boundary can only be linear
- Nearest Neighbours: the boundary can more complex
- Which is better?
 - Depends on what the *actual boundary* looks like
 - Depends on whether we have enough data to figure out the *correct* complex boundary