
Question 1 (5 points)

For a given classifier, let C denote the classifier output, Y denote the correct output, D denote the
sensitive characteristic, X denote the input features, and s(·) denote the score function.

Calibration (3 points)

If the score function is used for the classifier’s output:

p(Y = 1|s(X) = S,D = d) = p(Y = 1|s(X) = S,D = d′) ∀S ∈ range(s) (1)

where S ∈ R is any value the score function takes; d and d′ are two values the feature D takes.

If the classifier’s score output is assumed to be binary, the following results in:

p(Y = 1|c = 1, D = d) = p(Y = 1|c = 1, D = d′) and (2)

p(Y = 1|c = 0, D = d) = p(Y = 1|c = 0, D = d′) (3)

False Positive Parity (2 points)

p(C = 1|Y = 0, D = d) = p(C = 1|Y = 0, D = d′) (4)

Marking Scheme

For both calibration and FPR:

• Full marks for correct formulas.

• Partial marks for minor typos.

• No mark for incorrect formulas.

Question 2 (5 points)

Example Solution

Basic Idea

The base rates for the different demographics must be equal.

Dataset

Two populations A and B. People with no prior arrests have a 10% chance of arrest, and people with
prior arrests have a 50% chance of re-arrest. In both A and B, 50% of people have prior arrests, and
50% don’t.

Classifier

Predict 0 if no prior arrests, 1 if there are prior arrests.

Calibration

By the definition of the population and our classifier rule:

p(Y = 1|C = 1, D = d) =p(Y = 1|C = 1, D = d′) = 0.5 (5)

p(Y = 1|C = 0, D = d) =p(Y = 1|C = 0, D = d′) = 0.1 (6)
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False Positive Rate

p(C = 1|Y = 0, D = d) =
p(C = 1, Y = 0|D = d)

p(Y = 0|D = d)
(7)

=
p(Y = 0|C = 1, D = d)p(C = 1|D = d)

p(Y = 0|D = d)
(8)

=
0.5× 0.5

0.5× 0.1 + 0.5× 0.5
(9)

The false positive rate is the same regardless of demographics.

Making scheme

• 1 point for setting base rates to be the same.

• 1 point for specifying a sensible classifier.

• 2 points for proving that false positive rate parity and calibration are satisfied, explicitly using
the fact that the base rates are the same.

• 1 point for an explanation that makes sense.

Question 3

Suppose we observe sex and red car and aggressiveness (aggr) predicts both car colour and accidents.
We have something like:

p(redcar = 1) = σ(sex+ aggr)
p(accident = 1) = σ(aggr)
If we predict accidents using only red car, the classifier won’t satisfy calibration: we will over-

predict acc for sex = 1, and under-predict acc for sex = 0. If we control sex, the classifier can be
calibrated since we can correctly predict aggr if we have both sex and red car.

Figure 1: model

Marking scheme

• 4 pts for the idea of omitted variable bias

• 3 pts for correctly saying which fairness criterion is not satisfied and why

• 3 pts for explaining why adding the variable can make the problem go away

Question 4

Consider the following probability model where we imagine we measure the temperature at different
altitudes during different seasons.

p(low = 1) = 0.5
p(low = 0) = 0.5
p(summer = 1) = 0.25
p(summer = 0) = 0.75
p(hot = 1) = σ(summer + low × 0.1− 1)
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Explaining away refers to variables that cause a variable Z becoming anti-correlated when Z is
observed. p(summer = 1|hot = 1, low = 1) < p(summer = 1|hot = 1)

Making scheme

• 3 pts: plausible probability distribution

• 7 pts: good explanation including an expression of probabilities involving the example

Question 5

Cost function:

J =
∑
i,j

f(Xij)(ui.vj + bi + b′j − log(Xij))
2 (10)

Figure 2: f function

0.1 Intuition 1

Want the similarity of words i and j to correspond to the number of co-occurrences of the words so:
Make ui · vj approximate log(Xij)
Do not want frequent words to have an out-sized influence on the embeddings, so limit the influence
of high co-occurrence counts using f .

0.2 Intuition 2

Want the embeddings to reflect the probability of word i conditional on seeing word j so make
P (Wordi|Wordj) ≈ log(Xij/Xi) ≈ ui·vj . Absorb (Xi) into the biases, to get (ui.vj+bi+b′j−log(Xij))

2

Intuition for f is same as above.

Marking scheme

• 4 pts for formula

• 6 pts for intuition (2 pts for f + 4 pts for either intuition 1 or 2

Question 6

The training set distribution is the probability distribution implied by the training set. That is, if we
generated examples from the training set distribution, we’d get examples that look like examples from
the training set.
The generator distribution is the distribution implied by the generator. That is, samples from the
distribution can be obtained using

Z ∼ N (0, I)
S = Gθ(Z).
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Marking scheme

• 2 pts for training distribution

• 3 pts for generator distribution (at most 1 pt if z ∼ N(0, I), sample = Gθ(z) is not in the
explanation

Question 7

We first derive the optimal discriminator given a generator G. The optimal discriminator optimizes
the cost function:

C(G) = max
D

V (G,D) = max
D

EX∼Pdata
logDG(x) + EZ∼Pz

log(1−DG(G(z))

= max
D

EX∼Pdata
logDG(x) + EX∼PG

log(1−DG(x))

= max
D

∫
x

[Pdata(x) logDG(x) + PG(x) log(1−DG(x))] dx

We will now maximize the integrand with respect to DG(x):

f(y) = a log b+ b log(1− y) ⇒

f
′
(y) =

a

y
− b

1− y
⇒

y =
a

a+ b

So, D∗
G(x) =

Pdata(x)
Pdata(x)+PG(x) is the optimal discriminator

So, when optimizing the generator, we are optimizing:

C(G) = EX∼Pdata
log

Pdata(x)

Pdata(x) + PG(x)
+ EX∼PG

log
PG(x)

Pdata(x) + PG(x)

= EX∼Pdata
log

Pdata(x)
Pdata(x)+PG(x)

2

− log 2 + EX∼PG
log

PG(x)
Pdata(x)+PG(x)

2

− log 2

= KL(Pdata||
Pdata + PG

2
) +KL(PG||

Pdata + PG

2
)− log 4

= 2 JS(Pdata||PG)− log 4

So minimizing C(G) is the same as minimizing JS(Pdata||PG)

Marking scheme

For full points, there should be a clear explanation of what is going on.

Question 8

Node2vec learns the embedding zu for each node u.
We start out with wanting to maximize the probability of u and v co-occurring according to the

model if v occurs on a random walk starting with u. We express this probability as:

exp(zu · zv)∑
n∈V exp(zu · zu)

We are trying to make it so the embeddings are close (understood as making zu · zv high)
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Instead of maximizing
∑

u

∑
v∈N(u)) log

exp(ZuZv)∑
u∈V (exp(ZuZm) we try to maximize the numerators and

minimize an estimate for the denominators. An objective function for a minibatch can look like

Lu = σ(zu · zv)−
K∑
i=1

σ(zu · zni
) (11)

we sample the ni according to the degree of nodes so that more connected nodes have more influence.
We then maximize the Lu’s.

Marking scheme

• 3 pts for the correct function to optimize

• 2 pts for saying we optimize probability of co-occurrence and giving the formula for the probability

• 3 pts for connecting maximizing zu · zv, the embeddings being similar, and u and v co-occurring

• 2 pts for explaining that the negative sampling formula is an approximation

Question 9

Permutation invariant: f(A) = f(B) if graph A is an rearrangement of graph B
Permutation equivariant: If i and j are permuted between A and B, f(A)i, f(B)i = f(B)j , f(A)j

Marking scheme

• 1 point each for “invariant” and “equivariant”

Question 10

If we stack every embedding, computing the embeddings is Permutation-equivariant because the em-
beddings depend on what the neighbours are, and not on their order.

Marking scheme

• Only accept answers with an explanation

• If the explanation makes sense, also accept invariant+equivariant
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