Reinforcement Learning with Policy Gradients
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Reinforcement Learning

* Supervised learning:

 The training set consists of inputs and outputs. We try to
build a function that predicts the outputs from the inputs.

The cost function is a supervision signal that tells us how well
we are doing

* Unsupervised Learning

* The training set consists of data (just the inputs). We try to
build a function that models the inputs. There is no
supervision signal

* Reinforcement Learning

* The agent performs actions that change the state and
receives rewards that depend on the state

* Trade-off between exploitation(}%o to states you already

discovered give you high reward) and exploration (try going to
states that give even higher rewards)



Reinforcement Learning

* The world is going through a sequence of states
S1,S>,S3, ..., S, and times tq, to, ..., t,

* At each time t;, the agent performs action a;, moves to
state s;.; (depending on the action taken) and receives
reward 7; (the reward could be 0)

 Goal: maximize the total reward over time
 Totalreward:ry +1, + -+ 1,

* Total reward with discounting, so that rewards for away in the
future count for less: r; + yr, + y2ry + -+ y" 1,
* Getting a reward now is better than getting the same reward later
on



Reinforcement Learning: Go

AlphaGo defeats Lee Sedol (2016)
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Reinforcement Learning: Go

 State: the position on the board

Reward: O if the game hasn’t ended, 1 if the agent wins, -1 if
the opponent wins

Action: make a legal Go move (place a stone on a free point)

Goal: make a function that, given the state (position on the
board), finds an optimal move

* Note: we could have intermediate goals as well, like learning a
function that evaluates every state

Exploitation vs. Exploration

* Make moves the function already thinks will lead to a good
outcome vs

* Try making novel moves and see if you discover a way to adjust the
function to get even better outcomes



Reinforcement Learning: Walking

https://gym.openai.com/envs/Walker2d-v1



Reinforcement Learning: Walking

* State: the positions of all the joints

e Reward: if we haven’t walked to the destination
vet, 0. If we reached the destination, 1

* Action: apply a force to a joint in a particular
direction

* Goal: learn a function that applies a particular force
to a particular joint at every time-step t so that the
walker reaches the destination



Policy Learning

* A policy function i takes in the current state s, and
outputs the move (action) the agent should take
* Deterministic policy: a = (s)
e Stochastic policy: m(a|s) = P(A; = a|S; = s)
* Must have for things like playing poker
* But also good for exploration in general!

* Just like for other functions we approximate, we
can parametrize  using a parameter vector 6
* |nitialize @ randomly

* Follow the policy g, and adjust 8 based on the rewards
we receive



Softmax Policy (discrete actions)

* Compute features ¢(a, s) for each action-state
tuple
* Some kind of representation that makes sense

* Could be something very complicated
* E.g. something computed using a deep neural network

* In general, we can think of the features as the last layer
of the neural network, before it’s passed into the
softmax

e mg(s,a) x exp(d(s,a)’9)



Gaussian Policy (continuous
actions)

 For continuous actions, it makes sense to use a
Gaussian distribution for the actions, centered
around ¢ (s)'8

c a~N(¢p(s)'8,0%)



How good is policy g ?

* V6 (s) is the (expected) total reward if we start
from state s
 Start from state s attime O
* Follow policy g, and compute ry + yry + y21r, + -+

* q"9(als) is the total expected reward for performing action
a in state s, and then following g

* V70(s) = Lq mp (als) q"0(als)



How good is policy g ?

* d™0(s) is the probability of the agent being in state s if
we follow policy g for a long time
* Not easily computed at all!

* But we can simply follow policy g for a long time and record
how often we find ourselves in each state

e For continuous states, do some approximation of that

* Jawv (0) = X d™0 (s)VT0(s)
« V0 (s) is the (expected) total reward if we start from state s

* We want states that lead to high rewards to have high
probability

* We want to take actions that lead to high rewards
* Larger /.,y (8) means better 6



Policy Gradient

* Jawv (8) = X5 d™0 ()VT0(s)

Z a (s) 2 mo(als)q™ (als)
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8] /06,
*ldea: 0 < 60 + aVJ(0)

* Increase |



Policy Gradient: Finite Differences

e Foreachkinl..n
0J(6) _ J(O+ur)—J(6)
aek €
» Approximate J(6) by following policy g for a while
and keeping track of the rewards you get!

* Has actually been used to make physical robots
that walk
* The policy function had about 12 parameters

e Vary each parameter in turn, have the robot run,
measure how fast it ran, and compute the gradient
based on that

(uy is all 0’s except the k-th coordinate is €)



Policy Gradient Theorem

* Jav (8) = X5 d™ (s)VT (5), so
']avV(H) — Zs dre (S) Za Ty (als) q”é’ (a|5)

* g (a|s) is the probability of taking action a starting
from state s, following policy my (als)

* q™0( als) is the total expected reward for performing
action a in state s, and then following g

* VQ]avV(H) = Zs dre (S) Za Clng(a|5)\79ﬂ9 (CllS)

* Not obvious! We are differentiating an expression
involving both d™¢ and V™6



Policy Gradient Theorem

* VB]avV(Q) — Zs dre (S) Za q”é’(a|s)\79n9 (als)

* Weighted sum over )., q™0(s,a)Vymy (als)

* If it looks like we should take action a in state s (i.e.,
q™0(s,a) is high):

 Care more about Vymy (a|s), which tells us how to change 0 to
make it more likely that we take action g in state s

* Take the weighted average over the gradients for all
states, weighing the states that we are more likely to
visit more



Policy Gradient: Gaussian Policy

c a~N(¢(s)'0,0%)
(a-¢)76)"\ _

202
(a-$()TO)?

202

(a—¢(s)"0)p(s)

2
o
. (H??w to make it more likely that we take action a in state
ST

* (Aside: Vlog (f) = (Vf)/f)

e Vglogmg(als) = Vg logexp (—

Ve




Expectation trick

* At time t, starting from state S;:

* VQ]avV(Q) —
s A0 (s) g q™0(a|s)Vymg (als) =

Eq, [y Z q™ (a|S:)Veme (alS)]

* (Just follow policy mg, and in the long term, will
encounter states in proportions d™¢ )



Using expectations

* En,[f(A)] = Xa e (a) f(a)
* Eng f(A)] — Eng [Eng [f(A)] =
En9 _Za g (a) f(a)]




Expectation trick, again

* VQ]avV(H) — Erc9 [yt Za qng (alst)VHT[Q (alst)]

Exy [ Za 7 (alS)g™ (als,) 222 )

* Multiply and divide again by my (a|S;)

* Now, replace the sum over actions a by a single
action A; that we actually take — can do that inside
an expectation!

Vorg (A¢lSt)
= Eq, [v'q™0 (A¢|Se)

g (A:1S¢)

]



Expectation trick, again

g (A¢|S
* VoJaww (0) = By [y q™ (AcS,) o iot)

* Now, replace q™9(A¢|S;) by the actual total reward
we get by following policy mg, G; -- again, can do
that inside the expectation

v A¢|S
* VoJawv (6) =ETL'9 tht z:%gltﬁsl't;) —

En, (V' G Vg logmg(Ac]St)]
* Note: E[Go] — VTL'Q (So)




REINFORCE: Intro

Vorrg (A¢|S
* VoJawv (6) =Erc9 Vth zee(lgltﬁsl't;) —

En, [ G Vg logmg (A¢|Se)]




REINFORCE

Vorg (A¢|S
° VQ]avV(e) = E7T9 tht z:?‘gtﬁétf)

* Estimate the expectation by simply following policy
g and recording the rewards you get!

Input: a differentiable policy parameterization w(a|s,8),Va € A,s € 8,8 € R"
Initialize policy weights @
Repeat forever:
Generate an episode Sy, Ay, Ry,....57—1, Ar_y, Ry, following =(-|-, @)
For each step of the episode t =0,...,T — 1:
(¢ + return from step t
0 — 6 + av' G Vg log m( A4| S, 0)

* Note: G; is the total (discounted) reward starting from time t

23



REINFORCE

v A¢lS
* VG]avV(H) — Erc9 Vth zze(lgltﬁsl't;)

e Overall idea: follow the policy, if it seems that
starting from time t we’re getting a big reward,
make state A; more likely



Case Study: AlphaGO

* Go is a remarkably difficult game
* Lots of possible moves

« At least 10(10*%) possible games
* Very hard to tell if a position is good or bad

25



Google Brain’s AlphaGo

* Defeated Lee Sedol, one of the world’s top Go
professionals

* The first time a computer program managed to do
that

* Highly engineered system with multiple moving
parts



AlphaGo’s policy network

e Stage A: a deep convolutional network trained by trying
using supervised learning to predict human moves in a
game database

* A ConvNet makes sense since Go “shapes” — configurations of

stones — are local, and might be detectable with
convolutional layers

 Stage B: use Reinforcement Learning to learn the policy
network by making the policy network play against a
previous iteration of the policy network
 Reward: winning a game
* Train using Policy Gradient

* Use a sophisticated game tree search algorithm
together with the Policy Network to actually play the
game



AlphaGo Zero
nature
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AlphaGo Zero

 Does not use a database of human moves to train
the initial network that evaluates positions

 Does not use “rollouts”

* At test time, just evaluate all the possible positions one
move ahead

e Used S25 million of hardware



