
Reinforcement Learning with Policy Gradients

ECE324, Winter 2022

Michael Guerzhoy

Some slides from:

David Silver, Radford Neal
1

Cyber Rodent Project

http://www.cns.atr.jp/cnb/crp/

Reinforcement Learning

• Supervised learning:
• The training set consists of inputs and outputs. We try to

build a function that predicts the outputs from the inputs.
The cost function is a supervision signal that tells us how well
we are doing

• Unsupervised Learning
• The training set consists of data (just the inputs). We try to

build a function that models the inputs. There is no
supervision signal

• Reinforcement Learning
• The agent performs actions that change the state and

receives rewards that depend on the state
• Trade-off between exploitation (go to states you already

discovered give you high reward) and exploration (try going to
states that give even higher rewards)

2

Reinforcement Learning

• The world is going through a sequence of states
𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 and times 𝑡1, 𝑡2, … , 𝑡𝑛

• At each time 𝑡𝑖, the agent performs action 𝑎𝑖, moves to
state 𝑠𝑖+1 (depending on the action taken) and receives
reward 𝑟𝑖 (the reward could be 0)

• Goal: maximize the total reward over time
• Total reward: 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛
• Total reward with discounting, so that rewards for away in the

future count for less: 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 +⋯+ 𝛾𝑛−1𝑟𝑛
• Getting a reward now is better than getting the same reward later

on

3

Reinforcement Learning: Go

AlphaGo defeats Lee Sedol (2016)

4

Reinforcement Learning: Go

• State: the position on the board

• Reward: 0 if the game hasn’t ended, 1 if the agent wins, -1 if
the opponent wins

• Action: make a legal Go move (place a stone on a free point)

• Goal: make a function that, given the state (position on the
board), finds an optimal move
• Note: we could have intermediate goals as well, like learning a

function that evaluates every state

• Exploitation vs. Exploration
• Make moves the function already thinks will lead to a good

outcome vs
• Try making novel moves and see if you discover a way to adjust the

function to get even better outcomes

5

Reinforcement Learning: Walking

6

https://gym.openai.com/envs/Walker2d-v1

Reinforcement Learning: Walking

• State: the positions of all the joints

• Reward: if we haven’t walked to the destination
yet, 0. If we reached the destination, 1

• Action: apply a force to a joint in a particular
direction

• Goal: learn a function that applies a particular force
to a particular joint at every time-step t so that the
walker reaches the destination

7

Policy Learning

• A policy function 𝜋 takes in the current state s, and
outputs the move (action) the agent should take
• Deterministic policy: 𝑎 = 𝜋(𝑠)

• Stochastic policy: 𝜋 𝑎 𝑠 = 𝑃(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠)
• Must have for things like playing poker

• But also good for exploration in general!

• Just like for other functions we approximate, we
can parametrize 𝜋 using a parameter vector 𝜃
• Initialize 𝜃 randomly

• Follow the policy 𝜋𝜃, and adjust 𝜃 based on the rewards
we receive

8

Softmax Policy (discrete actions)

• Compute features 𝜙(𝑎, 𝑠) for each action-state
tuple
• Some kind of representation that makes sense

• Could be something very complicated
• E.g. something computed using a deep neural network

• In general, we can think of the features as the last layer
of the neural network, before it’s passed into the
softmax

• 𝜋𝜃 𝑠, 𝑎 ∝ exp(𝜙 𝑠, 𝑎 𝑇𝜃)

9

Gaussian Policy (continuous
actions)
• For continuous actions, it makes sense to use a

Gaussian distribution for the actions, centered
around 𝜙 𝑠 𝑇𝜃

• 𝑎~𝑁(𝜙 𝑠 𝑇𝜃, 𝜎2)

10

How good is policy 𝜋𝜃?

• 𝑉𝜋𝜃(𝑠) is the (expected) total reward if we start
from state s
• Start from state s at time 0

• Follow policy 𝜋𝜃, and compute 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 +⋯

• 𝑞𝜋𝜃(𝑎|𝑠) is the total expected reward for performing action
a in state s, and then following 𝜋𝜃
• 𝑉𝜋𝜃 𝑠 = σ𝑎 𝜋𝜃 𝑎 𝑠 𝑞𝜋𝜃(𝑎|𝑠)

11

How good is policy 𝜋𝜃?

• 𝑑𝜋𝜃(𝑠) is the probability of the agent being in state 𝑠 if
we follow policy 𝜋𝜃 for a long time
• Not easily computed at all!
• But we can simply follow policy 𝜋𝜃 for a long time and record

how often we find ourselves in each state
• For continuous states, do some approximation of that

• 𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 𝑉𝜋𝜃(𝑠)
• 𝑉𝜋𝜃(𝑠) is the (expected) total reward if we start from state s
• We want states that lead to high rewards to have high

probability
• We want to take actions that lead to high rewards

• Larger 𝐽𝑎𝑣𝑉 𝜃 means better 𝜃

12

Policy Gradient

• 𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 𝑉𝜋𝜃(𝑠)

=෍

𝑠

𝑑𝜋𝜃 𝑠 ෍

𝑎

𝜋𝜃 𝑎 𝑠 𝑞𝜋𝜃(𝑎|𝑠)

• 𝛻𝐽 =

𝜕𝐽/𝜕𝜃1…
…

𝜕𝐽/𝜕𝜃𝑛
• Idea: 𝜃 ← 𝜃 + 𝛼𝛻𝐽(𝜃)

• Increase 𝐽

13

Policy Gradient: Finite Differences

• For each 𝑘 in 1. . 𝑛
𝜕𝐽 𝜃

𝜕𝜃𝑘
≈

𝐽 𝜃+𝑢𝑘 −𝐽(𝜃)

𝜖
(𝑢𝑘 is all 0’s except the k-th coordinate is 𝜖)

• Approximate 𝐽 𝜃 by following policy 𝜋𝜃 for a while
and keeping track of the rewards you get!

• Has actually been used to make physical robots
that walk
• The policy function had about 12 parameters
• Vary each parameter in turn, have the robot run,

measure how fast it ran, and compute the gradient
based on that

14

Policy Gradient Theorem

• 𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 𝑉𝜋𝜃 (𝑠), so

• 𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 σ𝑎 𝜋𝜃 𝑎 𝑠 𝑞𝜋𝜃(𝑎|𝑠)
• 𝜋𝜃 (𝑎|𝑠) is the probability of taking action 𝑎 starting

from state 𝑠, following policy 𝜋𝜃 (𝑎|𝑠)

• 𝑞𝜋𝜃 𝑎|𝑠 is the total expected reward for performing
action a in state s, and then following 𝜋𝜃

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 σ𝑎 𝑞𝜋𝜃 𝑎|𝑠 𝛻𝜃𝜋𝜃 𝑎 𝑠
• Not obvious! We are differentiating an expression

involving both 𝑑𝜋𝜃 and 𝑉𝜋𝜃

15

Policy Gradient Theorem

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = σ𝑠 𝑑𝜋𝜃 𝑠 σ𝑎 𝑞𝜋𝜃 𝑎|𝑠 𝛻𝜃𝜋𝜃 𝑎 𝑠
• Weighted sum over σ𝑎 𝑞𝜋𝜃 𝑠, 𝑎 𝛻𝜃𝜋𝜃 𝑎 𝑠

• If it looks like we should take action a in state s (i.e.,
𝑞𝜋𝜃 𝑠, 𝑎 is high):
• Care more about 𝛻𝜃𝜋𝜃 𝑎 𝑠 , which tells us how to change 𝜃 to

make it more likely that we take action a in state s

• Take the weighted average over the gradients for all
states, weighing the states that we are more likely to
visit more

16

Policy Gradient: Gaussian Policy

• 𝑎~𝑁(𝜙 𝑠 𝑇𝜃, 𝜎2)

• 𝛻𝜃 log 𝜋𝜃(𝑎|𝑠) = 𝛻𝜃 log exp −
𝑎−𝜙 𝑠 𝑇𝜃

2

2𝜎2
=

𝛻𝜃 −
𝑎 − 𝜙 𝑠 𝑇𝜃 2

2𝜎2
=

𝑎 − 𝜙 𝑠 𝑇𝜃 𝜙(𝑠)

𝜎2
• (How to make it more likely that we take action 𝑎 in state
𝑠?)

• (Aside: 𝛻 log (𝑓) = (𝛻𝑓)/𝑓)

17

Expectation trick

• At time t, starting from state 𝑆𝑡:

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 =
σ𝑠 𝑑𝜋𝜃 𝑠 σ𝑎 𝑞𝜋𝜃 𝑎|𝑠 𝛻𝜃𝜋𝜃 𝑎 𝑠 =

𝐸𝜋𝜃 [𝛾
𝑡෍

𝑎

𝑞𝜋𝜃(𝑎|𝑆𝑡)𝛻𝜃𝜋𝜃 𝑎 𝑆𝑡]

• (Just follow policy 𝜋𝜃, and in the long term, will
encounter states in proportions 𝑑𝜋𝜃)

18

Using expectations

• 𝐸𝜋𝜃[𝑓(𝐴)] = σ𝑎 𝜋𝜃 (𝑎) 𝑓(𝑎)

• 𝐸𝜋𝜃 𝑓 𝐴 = 𝐸𝜋𝜃[𝐸𝜋𝜃 𝑓 𝐴 =

𝐸𝜋𝜃 σ𝑎 𝜋𝜃 𝑎 𝑓 𝑎

19

Expectation trick, again

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃 [𝛾
𝑡 σ𝑎 𝑞𝜋𝜃(𝑎|𝑆𝑡)𝛻𝜃𝜋𝜃 𝑎 𝑆𝑡]

=

𝐸𝜋𝜃 𝛾𝑡 σ𝑎 𝜋𝜃 𝑎 𝑆𝑡 𝑞
𝜋𝜃(𝑎|𝑆𝑡

𝛻𝜃𝜋𝜃 𝑎 𝑆𝑡
𝜋𝜃 𝑎 𝑆𝑡

]

• Multiply and divide again by 𝜋𝜃 𝑎 𝑆𝑡

• Now, replace the sum over actions a by a single
action 𝐴𝑡 that we actually take – can do that inside
an expectation!

= 𝐸𝜋𝜃 [𝛾
𝑡𝑞𝜋𝜃(𝐴𝑡|𝑆𝑡)

𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

]

20

Expectation trick, again

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃[𝛾
𝑡𝑞𝜋𝜃(𝐴𝑡|𝑆𝑡)

𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

]

• Now, replace 𝑞𝜋𝜃(𝐴𝑡|𝑆𝑡) by the actual total reward
we get by following policy 𝜋𝜃, 𝐺𝑡 -- again, can do
that inside the expectation

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃 𝛾𝑡𝐺𝑡
𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

=

𝐸𝜋𝜃 𝛾𝑡𝐺𝑡𝛻𝜃 log 𝜋𝜃(𝐴𝑡|𝑆𝑡)

• Note: 𝐸 𝐺0 = 𝑉𝜋𝜃(𝑆0)

21

REINFORCE: Intro

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃 𝛾𝑡𝐺𝑡
𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

=

𝐸𝜋𝜃 𝛾𝑡𝐺𝑡𝛻𝜃 log 𝜋𝜃(𝐴𝑡|𝑆𝑡)

22

REINFORCE

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃 𝛾𝑡𝐺𝑡
𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

• Estimate the expectation by simply following policy
𝜋𝜃 and recording the rewards you get!

• Note: 𝐺𝑡 is the total (discounted) reward starting from time t

23

REINFORCE

• 𝛻𝜃𝐽𝑎𝑣𝑉 𝜃 = 𝐸𝜋𝜃 𝛾𝑡𝐺𝑡
𝛻𝜃𝜋𝜃 𝐴𝑡 𝑆𝑡
𝜋𝜃 𝐴𝑡 𝑆𝑡

• Overall idea: follow the policy, if it seems that
starting from time t we’re getting a big reward,
make state 𝐴𝑡 more likely

24

Case Study: AlphaGO

• Go is a remarkably difficult game
• Lots of possible moves

• At least 10(10
48) possible games

• Very hard to tell if a position is good or bad

25

Google Brain’s AlphaGo

• Defeated Lee Sedol, one of the world’s top Go
professionals

• The first time a computer program managed to do
that

• Highly engineered system with multiple moving
parts

26

AlphaGo’s policy network

• Stage A: a deep convolutional network trained by trying
using supervised learning to predict human moves in a
game database
• A ConvNet makes sense since Go “shapes” – configurations of

stones – are local, and might be detectable with
convolutional layers

• Stage B: use Reinforcement Learning to learn the policy
network by making the policy network play against a
previous iteration of the policy network
• Reward: winning a game
• Train using Policy Gradient

• Use a sophisticated game tree search algorithm
together with the Policy Network to actually play the
game

27

AlphaGo Zero

28

AlphaGo Zero

• Does not use a database of human moves to train
the initial network that evaluates positions

• Does not use “rollouts”
• At test time, just evaluate all the possible positions one

move ahead

• Used $25 million of hardware

29

