Reinforcement Learning with Policy Gradients

Some slides from:

Internal state “Nreward

enwronment

learning rate o
inverse temperature p
discount rate y

observation

Cyber Rodent Project

David Silver, Radford Neal

ECE324, Winter 2022

Michael Gulerzhoy

http://www.cns.atr.jp/cnb/crp/

Reinforcement Learning

* Supervised learning:

 The training set consists of inputs and outputs. We try to
build a function that predicts the outputs from the inputs.

The cost function is a supervision signal that tells us how well
we are doing

* Unsupervised Learning

* The training set consists of data (just the inputs). We try to
build a function that models the inputs. There is no
supervision signal

* Reinforcement Learning

* The agent performs actions that change the state and
receives rewards that depend on the state

* Trade-off between exploitation(}%o to states you already

discovered give you high reward) and exploration (try going to
states that give even higher rewards)

Reinforcement Learning

* The world is going through a sequence of states
S1,S>,S3, ..., S, and times tq, to, ..., t,

* At each time t;, the agent performs action a;, moves to
state s;.; (depending on the action taken) and receives
reward 7; (the reward could be 0)

 Goal: maximize the total reward over time
 Totalreward:ry +1, + -+ 1,

* Total reward with discounting, so that rewards for away in the
future count for less: r; + yr, + y2ry + -+ y" 1,
* Getting a reward now is better than getting the same reward later
on

Reinforcement Learning: Go

AlphaGo defeats Lee Sedol (2016)

ALPHAGO

.+.00:00:49 |

Reinforcement Learning: Go

 State: the position on the board

Reward: O if the game hasn’t ended, 1 if the agent wins, -1 if
the opponent wins

Action: make a legal Go move (place a stone on a free point)

Goal: make a function that, given the state (position on the
board), finds an optimal move

* Note: we could have intermediate goals as well, like learning a
function that evaluates every state

Exploitation vs. Exploration

* Make moves the function already thinks will lead to a good
outcome vs

* Try making novel moves and see if you discover a way to adjust the
function to get even better outcomes

Reinforcement Learning: Walking

https://gym.openai.com/envs/Walker2d-v1

Reinforcement Learning: Walking

* State: the positions of all the joints

e Reward: if we haven’t walked to the destination
vet, 0. If we reached the destination, 1

* Action: apply a force to a joint in a particular
direction

* Goal: learn a function that applies a particular force
to a particular joint at every time-step t so that the
walker reaches the destination

Policy Learning

* A policy function i takes in the current state s, and
outputs the move (action) the agent should take
* Deterministic policy: a = (s)
e Stochastic policy: m(a|s) = P(A; = a|S; = s)
* Must have for things like playing poker
* But also good for exploration in general!

* Just like for other functions we approximate, we
can parametrize using a parameter vector 6
* |nitialize @ randomly

* Follow the policy g, and adjust 8 based on the rewards
we receive

Softmax Policy (discrete actions)

* Compute features ¢(a, s) for each action-state
tuple
* Some kind of representation that makes sense

* Could be something very complicated
* E.g. something computed using a deep neural network

* In general, we can think of the features as the last layer
of the neural network, before it’s passed into the
softmax

e mg(s,a) x exp(d(s,a)’9)

Gaussian Policy (continuous
actions)

 For continuous actions, it makes sense to use a
Gaussian distribution for the actions, centered
around ¢ (s)'8

c a~N(¢p(s)'8,0%)

How good is policy g ?

* V6 (s) is the (expected) total reward if we start
from state s
 Start from state s attime O
* Follow policy g, and compute ry + yry + y21r, + -+

* q"9(als) is the total expected reward for performing action
a in state s, and then following g

* V70(s) = Lq mp (als) q"0(als)

How good is policy g ?

* d™0(s) is the probability of the agent being in state s if
we follow policy g for a long time
* Not easily computed at all!

* But we can simply follow policy g for a long time and record
how often we find ourselves in each state

e For continuous states, do some approximation of that

* Jawv (0) = X d™0 (s)VT0(s)
« V0 (s) is the (expected) total reward if we start from state s

* We want states that lead to high rewards to have high
probability

* We want to take actions that lead to high rewards
* Larger /.,y (8) means better 6

Policy Gradient

* Jawv (8) = X5 d™0 ()VT0(s)

Z a (s) 2 mo(als)q™ (als)

0]/091
7~{,0)

8] /06,
*ldea: 0 < 60 + aVJ(0)

* Increase |

Policy Gradient: Finite Differences

e Foreachkinl..n
0J(6) _ J(O+ur)—J(6)
aek €
» Approximate J(6) by following policy g for a while
and keeping track of the rewards you get!

* Has actually been used to make physical robots
that walk
* The policy function had about 12 parameters

e Vary each parameter in turn, have the robot run,
measure how fast it ran, and compute the gradient
based on that

(uy is all 0’s except the k-th coordinate is €)

Policy Gradient Theorem

* Jav (8) = X5 d™ (s)VT (5), so
']avV(H) — Zs dre (S) Za Ty (als) q”é’ (a|5)

* g (a|s) is the probability of taking action a starting
from state s, following policy my (als)

* q™0(als) is the total expected reward for performing
action a in state s, and then following g

* VQ]avV(H) = Zs dre (S) Za Clng(a|5)\79ﬂ9 (CllS)

* Not obvious! We are differentiating an expression
involving both d™¢ and V™6

Policy Gradient Theorem

* VB]avV(Q) — Zs dre (S) Za q”é’(a|s)\79n9 (als)

* Weighted sum over)., q™0(s,a)Vymy (als)

* If it looks like we should take action a in state s (i.e.,
q™0(s,a) is high):

 Care more about Vymy (a|s), which tells us how to change 0 to
make it more likely that we take action g in state s

* Take the weighted average over the gradients for all
states, weighing the states that we are more likely to
visit more

Policy Gradient: Gaussian Policy

c a~N(¢(s)'0,0%)
(a-¢)76)"\ _

202
(a-$()TO)?

202

(a—¢(s)"0)p(s)

2
o
. (H??w to make it more likely that we take action a in state
ST

* (Aside: Vlog (f) = (Vf)/f)

e Vglogmg(als) = Vg logexp (—

Ve

Expectation trick

* At time t, starting from state S;:

* VQ]avV(Q) —
s A0 (s) g q™0(a|s)Vymg (als) =

Eq, [y Z q™ (a|S:)Veme (alS)]

* (Just follow policy mg, and in the long term, will
encounter states in proportions d™¢)

Using expectations

* En,[f(A)] = Xa e (a) f(a)
* Eng f(A)] — Eng [Eng [f(A)] =
En9 _Za g (a) f(a)]

Expectation trick, again

* VQ]avV(H) — Erc9 [yt Za qng (alst)VHT[Q (alst)]

Exy [Za 7 (alS)g™ (als,) 222)

* Multiply and divide again by my (a|S;)

* Now, replace the sum over actions a by a single
action A; that we actually take — can do that inside
an expectation!

Vorg (A¢lSt)
= Eq, [v'q™0 (A¢|Se)

g (A:1S¢)

]

Expectation trick, again

g (A¢|S
* VoJaww (0) = By [y q™ (AcS,) o iot)

* Now, replace q™9(A¢|S;) by the actual total reward
we get by following policy mg, G; -- again, can do
that inside the expectation

v A¢|S
* VoJawv (6) =ETL'9 tht z:%gltﬁsl't;) —

En, (V' G Vg logmg(Ac]St)]
* Note: E[Go] — VTL'Q (So)

REINFORCE: Intro

Vorrg (A¢|S
* VoJawv (6) =Erc9 Vth zee(lgltﬁsl't;) —

En, [G Vg logmg (A¢|Se)]

REINFORCE

Vorg (A¢|S
° VQ]avV(e) = E7T9 tht z:?‘gtﬁétf)

* Estimate the expectation by simply following policy
g and recording the rewards you get!

Input: a differentiable policy parameterization w(a|s,8),Va € A,s € 8,8 € R"
Initialize policy weights @
Repeat forever:
Generate an episode Sy, Ay, Ry,....57—1, Ar_y, Ry, following =(-|-, @)
For each step of the episode t =0,...,T — 1:
(¢ + return from step t
0 — 6 + av' G Vg log m(A4| S, 0)

* Note: G; is the total (discounted) reward starting from time t

23

REINFORCE

v A¢lS
* VG]avV(H) — Erc9 Vth zze(lgltﬁsl't;)

e Overall idea: follow the policy, if it seems that
starting from time t we’re getting a big reward,
make state A; more likely

Case Study: AlphaGO

* Go is a remarkably difficult game
* Lots of possible moves

« At least 10(10*%) possible games
* Very hard to tell if a position is good or bad

25

Google Brain’s AlphaGo

* Defeated Lee Sedol, one of the world’s top Go
professionals

* The first time a computer program managed to do
that

* Highly engineered system with multiple moving
parts

AlphaGo’s policy network

e Stage A: a deep convolutional network trained by trying
using supervised learning to predict human moves in a
game database

* A ConvNet makes sense since Go “shapes” — configurations of

stones — are local, and might be detectable with
convolutional layers

 Stage B: use Reinforcement Learning to learn the policy
network by making the policy network play against a
previous iteration of the policy network
 Reward: winning a game
* Train using Policy Gradient

* Use a sophisticated game tree search algorithm
together with the Policy Network to actually play the
game

AlphaGo Zero
nature

International journal of science

EEEZ B Altmetric: 2152 Citations: 1 More detail »

Article

Mastering the game of Go without human
knowledge

David Silverm, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,

Laurent Sifre, George van den Driessche, Thore Graepel & Demis Hassabis

Nature 550, 354-359 (19 October 2017) Received: 07 April 2017
doi:10.1038/nature24270 Accepted: 13 September 2017
Download Citation Published online: 18 October 2017

Computational science Computer science

Rewarrl

28

AlphaGo Zero

 Does not use a database of human moves to train
the initial network that evaluates positions

 Does not use “rollouts”

* At test time, just evaluate all the possible positions one
move ahead

e Used S25 million of hardware

