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Key ideas

• The Variational Autoencoder is trained by 
constraining the encoder so that training becomes 
tractable

• The encoder tries to approximate 𝑝(𝑧|𝑥) , the true 
conditional distribution of the code given an input
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Pre-requisites

• Understand why “vanilla” autoencoders are difficult 
to train

• Understand training a model with maximum 
likelihood

• Understand law of total expectation
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A bit of information theory

• Suppose 𝑉 is a random variable with the probability distribution

• The surprise 𝑆(𝑉 = 𝑣) for each value of 𝑣 is defined as
𝑆 𝑉 = 𝑣 = − log2 𝑃(𝑉 = 𝑣)

• The smaller the probability of the event, the larger the surprise if we 
observe the event

• 0 surprise for events with probability 1

• Infinite surprise for events with probability 0
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Surprise and Message Length

• Suppose we want to communicate the value of 𝑣 to 
a receiver. It makes sense to use longer binary 
codes for rarer values of 𝑉
• Can use − log2 𝑃(𝑉 = 𝑣) bits to communicate 𝑣

• Check that this makes sense if 𝑃 𝑉 = 0 = 1 (no need to 

transmit any information) and 𝑃 𝑉 = 0 = 𝑃 𝑉 = 1 =
1

2
(need one bit to transmit 𝑣)

• Fractional bits only make sense for longer messages

• Example: UTF-8 uses more bytes for rare symbols

• “Amount of information”
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Message length

P(a)=P(b)=0.25, P(c)=0.5

• Use 00 for a, 01 for b, and 1 for c

• Can decode any sequence 

6



Entropy: Average/Expected Surprise

• The entropy of 𝑉, 𝐻(𝑉) is defined as

𝐻 𝑉 =෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

• The average surprise for one “trial” of 𝑉
• The average message length when communicating the 

outcome  𝑣

• The average amount of information we get by 
seeing one value of 𝑉 (in bits)
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Entropy: How “Spread Out” the 
distribution is

• High entropy of 𝑉 means we cannot predict what 
the value of 𝑉 might be

• Low entropy means we are pretty sure we know 
what the value of 𝑉 is every time
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The entropy of a 
Bernoulli variable 
is maximized when 
𝑝 = 0.5



Entropy of Coin Flips
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Entropy of Coin Flips

10

𝐻 𝑉 =෍

𝑣

−𝑃 𝑉 = 𝑣 log2 𝑃(𝑉 = 𝑣)

Higher Entropy; more uncertainty about the outcome



Three views of Entropy

We are considering a random variable 𝑉, and a 
sample 𝑣 from it

The Entropy is

1. Average Surprise at 𝑣

2. Average message length when transmitting 𝑣 in 
an efficient way

3. Measure of the ”spread-out”-ness of the 
distribution 𝑉
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Kullback-Leibler Divergence

• Expected excess surprise when sampling from P 
with an expected distribution Q

• Extra bits needed to communicate samples from P 
when using a code for Q

𝐷𝐾𝐿(𝑃| 𝑄 = −෍

𝑣

(𝑃 𝑣 log𝑄 𝑣 − 𝑃 𝑣 log𝑃(𝑣))

𝐷𝐾𝐿(𝑃| 𝑄 = −෍

𝑣

𝑃 𝑣 log
𝑄 𝑣

𝑃 𝑣

• Continuous version: 𝐷𝐾𝐿(𝑃| 𝑄 = ∞−׬
∞
𝑝 𝑣 log

𝑝(𝑣)

𝑞(𝑣)
𝑑𝑣

• Can view as a measure of the difference between the distributions P 
and Q
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KL divergence is non-negative

• log 𝑎 ≤ 𝑎 − 1 for 𝑎 > 0
• log 𝑎 is concave, and only equals 𝑎 − 1 at 𝑎 = 1
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https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-
non-negative



KL divergence as an expectation

𝐷𝐾𝐿(𝑃| 𝑄 = න

−∞

∞

𝑝 𝑣 log
𝑝 𝑣

𝑞 𝑣
𝑑𝑣

= 𝐸𝑣~𝑝(𝑣) log
𝑝 𝑣

𝑞 𝑣

• Intuition: 𝐷𝐾𝐿(𝑃| 𝑄 is non-negative because 
𝑝 𝑣

𝑞 𝑣
is 

given more weigh for larger 𝑝 𝑣
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Variational Autoeoncoders

• Assume the training data 𝑥 𝑖
𝑖=1…𝑁

is generated 

from the distribution of unobserved code 𝑧
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Variational Autoeoncoders
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Training the model

• The maximum likelihood approach is to maximize the 
likelihood of the training data

• We observe x, but don’t observe z
• Can still in principle compute the likelihood of the 

observed data by using the law of total probability

𝑝𝜃 𝑥 = න𝑝𝜃 𝑧 𝑝𝜃 𝑥 𝑧 𝑑𝑧

• Intuition: compute the weighted sum of the 
probabilities of seeing the x we see, with the weights 
being the probabilities of the possible code z
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𝑝𝜃 𝑥 = න𝑝𝜃 𝑧 𝑝𝜃 𝑥 𝑧 𝑑𝑧

• Problem: the likelihood is intractable
• The decoder is a complicated function so can’t compute 

a closed-form integral of a function involving 𝑝𝜃(𝑥|𝑧)

• Cannot compute numerically since 𝑝𝜃 𝑥 𝑧 is mostly 0
• For most z’s, it’s unlikely is the reconstruction x that we actually 

see

• If 𝑝𝜃 𝑥 𝑧 is mostly 0, need a lot of samples to not miss the few 
local maxima
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Variational approach

• Learn 𝑞𝜙(𝑧|𝑥), an approximation of
𝑝𝜃 𝑧 𝑥 = 𝑝𝜃 𝑥 𝑧 𝑝𝜃(𝑧)/𝑝𝜃(𝑥)

• Will allow us to compute a tractable lower bound 
on the data likelihood
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Encoder
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KL divergence between two 
Gaussians
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https://mr-easy.github.io/2020-04-16-kl-
divergence-between-2-gaussian-distributions/
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• Sample z’s using the encoder

• Estimate 𝐸𝑧[log 𝑝𝜃(𝑥
𝑖 |𝑧)] ≈ 1/𝑁 σ𝑗=1…𝑁 log 𝑝𝜃(𝑥

𝑖 |𝑧𝑗)

• Can differentiate 1/𝑁 σ𝑗=1…𝑁 log 𝑝𝜃(𝑥
𝑖 |𝑧𝑗) w.r.t 𝜇𝑧|𝑥 and 𝜎𝑧|𝑥, and then backprop to 𝜙
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Looking back

• 𝑝𝜃 𝑥 = 𝑝𝜃׬ 𝑧 𝑝𝜃 𝑥 𝑧 𝑑𝑧 = 𝐸𝑧~𝑁 0,𝐼 𝑝𝜃(𝑥|𝑧)

• Not tractable: hard to find z’s for which 𝑝𝜃(𝑥|𝑧) is non-
zero

• 𝐸𝑧~𝑞𝜙(𝑧|𝑥 𝑖 ) log 𝑝𝜃(𝑥|𝑧)

• More tractable since we learned a function that gives us 
good z’s
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Generating data
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