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Key ideas

* The Variational Autoencoder is trained by
constraining the encoder so that training becomes
tractable

* The encoder tries to approximate p(z|x) , the true
conditional distribution of the code given an input



Pre-requisites

e Understand why “vanilla” autoencoders are difficult
to train

* Understand training a model with maximum
likelihood

* Understand law of total expectation



A bit of information theory

. Suppose I/ is a random variable with the probablllty distribution

0.002

* The surprise S(V = v) for each value of v is defined as
SWVW=v)=-log, P(V =v)

* The smaller the probability of the event, the larger the surprise if we
observe the event

e O surprise for events with probability 1
* Infinite surprise for events with probability O



Surprise and Message Length

e Suppose we want to communicate the value of v to
a receiver. It makes sense to use longer binary
codes for rarer values of V

* Canuse —log, P(V = v) bits to communicate v
* Check that this makes sense if P(V = 0) = 1 (no need to
transmit any information) and P(V =0) = P(V =1) = %
(need one bit to transmit v)
* Fractional bits only make sense for longer messages
* Example: UTF-8 uses more bytes for rare symbols

* “Amount of information”



Message length

P(a)=P(b)=0.25, P(c)=0.5
 Use 00 for a, 01 for b, and 1 for c
* Can decode any sequence



Entropy: Average/Expected Surprise

* The entropy of I/, H(V) is defined as
HV) = Z —P(V =v)log, P(V =v)

1%
* The average surprise for one “trial” of V

* The average message length when communicating the
outcome v

* The average amount of information we get by
seeing one value of V (in bits)



Entropy: How “Spread Out” the
distribution is

* High entropy of I’ means we cannot predict what
the value of V might be

* Low entropy means we are pretty sure we know
what the value of I/ is every time

_ . The entropy of a
LY A Bernoulli variable
] is maximized when
p = 0.5

0.6
Pv=0)



Entropy of Coin Flips

Sequence 1.
P00100000000000100 ... 7

Sequence 2:
1010111010011 0101...7
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Entropy of Coin Flips

HV) = z —P(V =v)log, P(V =)
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Higher Entropy; more uncertainty about the outcome
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Three views of Entropy

We are considering a random variable V, and a
sample v from it

The Entropy is
1. Average Surprise at v

2. Average message length when transmitting v in
an efficient way

3. Measure of the “spread-out”-ness of the
distribution I/



Kullback-Leibler Divergence

* Expected excess surprise when sampling from P
with an expected distribution Q

* Extra bits needed to communicate samples from P
when using a code for Q

D (PIIQ) = ‘Z(P(”) 10g Q(v) — P(v) log P(1))
Diu (PIIQ) = sz)log(Q( )

 Continuous version: Dg; (P||Q) —f p(v) log%dv

e Can view as a measure of the difference between the distributions P
and Q



KL divergence is non-negative

loga<a—1fora>0
* logais concave, and onlyequalsa—1ata =1

= — £ )1 p(m)
—D(p|lq) = ijp( )1 o)

= z)In a(z)

Z.::p( ) p(zx)

(a) q(z)

= 2_#(@) (p(x) _1)

= a(z) — > p(z)

—1-1

https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-
non-negative

13



KL divergence as an expectation

0.0)

p(v)
Dy, (P||Q) = f (v)log——=dv
k(P10 J p gq(v)
p(V))
=E, o log| —=
P g(qw)
* Intuition: Dk (P]|Q) is non-negative because % is

given more weigh for larger p(v)



Variational Autoeoncoders

* Assume the training data {x(‘)} |s generated
from the distribution of unobserved code z

Sample from
true conditional

po+(z | 2

Sample from
true prior

2% ~ pg (2)

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x: attributes, orientation, etc.

We want to estimate the true parameters g*
of this generative model given training data x.
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Variational Autoeoncoders

EEERERERER

Sample from
true conditional

po~(z | 2(¥)

Sample from
true prior

2% ~ py (2)

h

Decoder
network

2

AN

We want to estimate the true parameters g*
of this generative model given training data x.
How should we represent this model?
Choose prior p(z) to be simple, e.g.

Gaussian. Reasonable for latent attributes,
e.g. pose, how much smile.

Conditional p(x|z) is complex (generates
image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Sample from
true conditional ‘ i

po+(x | 3“‘})

Training the model o

true prior > ‘
2 ~ pp (2)

* The maximum likelihood approach is to maximize the
likelihood of the training data

 We observe x, but don’t observe z

e Can still in principle compute the likelihood of the
observed data by using the law of total probability

po(x) = fPQ(Z)Pe(ﬂZ)dZ

* Intuition: compute the weighted sum of the
Brobabilities of seeing the x we see, with the weights
eing the probabilities of the possible code z



po(x) = | po(2)py(x|2)dz

* Problem: the likelihood is intractable

* The decoder is a complicated function so can’t compute
a closed-form integral of a function involving pg (x|2)

 Cannot compute numerically since pg(x|z) is mostly 0

* For most Z’s, it’s unlikely is the reconstruction x that we actually
see

* If pg(x|z) is mostly 0, need a lot of samples to not miss the few
local maxima



Variational approach

* Learn q4(z|x), an approximation of
po(z|x) = po(x|2)pg(2)/pe(x)

* Will allow us to compute a tractable lower bound
on the data likelihood



log pg(z') = E. g, (zlz®) [logpg(:r("))} (pe(z'?) Does not depend on z)
po(z™ | 2)pe(2)
po(z | z(D)

_l (x| 2)pa(2) go(2 | =)
0 _ -
po(z |2@)  qp(z | 2@)

=E. |log ] (Bayes’ Rule)

] (Multiply by constant)

[ - ) (z | =)
=E. |lo MON ] —E. [10 M] +E, [10 %—] Tt e
logpy(a™ | 2) — B oo (o [20) (Log )
= E. |logpp(z"" | Z)] — Di1(gs(2 | 29) || po(2)) + Dicr(gp(z | 2) || po(z | )
} } | A
Decoder network gives p,(x|z), can This KL term (between P(ZIX) mtra?table (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can’t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL

differentiate through sampling). solution! divergence always >=0.



108270(33(i)) = B, g (2]2®) [logpg(m(i))] (pg(a:(i)) Does not depend on z)

i (%) -
= B, log pg(:l: | Z)(]:)g(z)] (Bayes’ Rule) Encoder:
Necodas po(z | z1)) make approximate
e o | Pe(@®) | 2)pe(2) gg(2 | =) . ' posterior distribution
reconstruct E. -log 70z [20)  gs(z | 2®) (Multiply by constant) close to prior

the input data

_ (i) (2)

g po(z | z)] —E. |log q_¢(z|_a,) + 0g M (Logarithms)
po(z) po(z | ()
|

\b ; - !. ;
=[E. [togpola® | 2)] — Dice(ag(z | ¥ TTpo(2)| + Drce(aoz | =) | potz | =)
L(zD.0.¢) >0

Tractable lower bound which we can take

gradient of and optimize! (p(x|z) differentiable,
KL term differentiable)
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Encoder

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(s® | 2)] —ID;\»L(%(z | 2®) | m(z)j

L(z™,0,)

Dkr, (N(ﬂ'zkz:a 2z]:z: ) | |N(0= I))

Have analytical solution

Make approximate
posterior distribution
close to prior

Hz|z 2 z|x
Encoder network
wielz) N

Input Data I




KL divergence between two
(Gaussians

b
log | q|

1 _ _
DKL(PHQ) = E \E | —k+ (P’p - P’q)TEq l(ﬂp - P"q) +1r {Eq IE'P}
P

https://mr-easy.github.io/2020-04-16-kI-

divergence-between-2-gaussian-distributions/
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Va riational AUtoenCOdel’S Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound Sample € ~v N(O’ I ’I[Ezué:ph
. . Z =
E. lugp,«;{;::'[") | n,)] Dgr(qe(z | z'i)) || pa(z)) #Z|33
L(z,0,0¢) Part of computation graph
Z
Sample z from 2|z ~ N(pz|$, Yalz)
’ Hz|z ‘ l z:z[:c ‘
Encoder network
g (2|z)
Input Data I

* Sample z’s using the encoder
+ Estimate E,[logpg(x®V|2)] = 1/N 3=y logpe(x?|z))
* Can differentiate 1/N }.;—; n logpg (x® |Zj) w.r.t ), and a5, and then backprop to ¢

24



Variational Autoencoders

Maximize likelihood of original

Putting it all together: maximizing the

likelihood lower bound

(= | 29) 1po(2)

>

input being reconstructed

/m\

/l‘a:|z Z:z:lz

Decoder network

po(z|2)

2

Sample z from z|:1: ~ N'([tzh,-, 2z|:z:)

Encoder network

q¢(2|z)

Input Data )

/
MZ|.'L' Zzlm

~._
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Looking back

* po(x) = | po(2)pe(x|2)dz = E,_N(0,Po (x]2)
* Not tractable: hard to find z’s for which pg(x|z) is non-
Zero

* Ez~qu(z|x(i)) log pg (x|2)

* More tractable since we learned a function that gives us
good z’s



Generating data

Our assumption about data generation

process

Sample from
true conditional

po+(z | 1)

Sample from
true prior

4

Decoder
network

V4

Now given a trained VAE:
use decoder network & sample z from prior!

A

4

Sample x|z from :1:|z ~ N(,Ltm|z, 2x|z)

S Se.

Hz|z

23:z:Iz

Decoder network

po(x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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2

Sample z from 2z ~ N (0, I)

27




Data manifold for 2-d z

Use decoder network. Now sample z from prior!
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Hz|z

sample x|z from Z|z ~ N (fig|z; Xz)2)

Decoder network
po(z|2)

Z
Sample z from z ~ N (0, )

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Diagonal prior on z

=> independent Degree of smile
latent variables

‘\ A
Different

dimensions of z Vary z,
encode

interpretable factors

of variation v

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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