
Understanding How ConvNets See

ECE324, Winter 2023

Michael Guerzhoy

Slides from Andrej Karpathy

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

1

Key ideas

• Can understand the mechanism of how the
network computes an output by thinking about
how individual neurons are computed

• The gradient of the cost with respect to a variable
indicates how important the variable is

• Can differentiate a cost with respect to the input
rather than the weights, and then change the input

2

Prerequisites

• Understand what a gradient does

• Understand how backpropagation works

• Convolutional layers and ReLU

3

Sample task

• Training set: 6 actors, with 100 64 × 64 photos of faces for each

• Test set: photos of faces of the same 6 actors

• Want to classify each face as one of ['Fran Drescher', 'America Ferrera', 'Kristin
Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']

The Simplest Possible Neural
Network for Face Recognition

outputs (one per actor)𝑧1

input vector

(flattened 64x64

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

𝑧𝑘 = 𝜎

𝑗=1

4096

𝑊 1,𝑗,𝑘 𝑥𝑗 + 𝑏 1,𝑘

= 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘
𝑥

𝜎(𝑥)

ℎ𝜃 = ℎ𝑊,𝑏

An interpretation
𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor 1,
actor 2, …, actor 6

Actor 3 neuron activated:

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large

input vector

(flattened 64x64

Image)

𝑧3

𝑥1 … …𝑥20 𝑥4096… … … … … … …

𝑊(1,4096,3)

𝑏(1,3)

𝑊(1,20,3)

𝑊(1,1,3) … ……

Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)

One hidden layer

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

input vector
(flattened
64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚)

K hidden

units

Visualizing a One-Hidden-Layer
NN

What Does a Neuron Do in a ConvNet? (1)

• A neuron in the first hidden layer computes a
weighted sum of pixels in a patch of the image for
which it is responsible

K. Fukushima, “Neurocognitron: A self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position” (Biol.
Cybernetics 1980)

10

What Does a Neuron Do in a ConvNet? (2)

• For neurons in the first hidden layer, we can
visualize the weights.

Example weights for fully-
connected single-hidden layer
network for faces, for one
neuron

Weights for 9 features in the
first convolutional layer of a
layer for classifying ImageNet
images

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”

11

What Does a Neuron Do in a ConvNet? (3)

• The neuron would be activated the most if the
input looks like the weight matrix

• These are called “Gabor-like filters”

• The colour is due to the input being 3D. We
visualize the strength of the weight going from each
of the R, G, and B components

12

What Does a Neuron Do in a ConvNet (4)

• Another to figuring out what kind of images active
the neuron: just try lots of images in a dataset, and
see which ones activate the neuron the most

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”

For each feature, fine the 9
images that produce the highest
activations for the neuron, and
crop out the relevant patch 13

Aside: Relevant Patch?

• Each neuron is affected by some small patch in the
layer below

• Can recursively figure out what patch in the input
layer each neuron is affected

• Neurons in the top layers are affected by (almost)
the entire image

14

This allows us to look at layers
besides the first one: layer 3

15

Layer 4

16

Layer 5

17

Which Pixels in the Input Affect
the Neuron the Most?
• Rephrased: which pixels would make the neuron

not turn on if they had been different?

• In other words, for which inputs is
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕𝑥𝑖
large?

18

𝑥1 𝑥2 𝑥3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑥3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑥2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤

19

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

20

Typical Gradient of a Neuron

• Mostly zero away from the object,
but the results are not very satisfying

• Every pixel influences the neuron via
multiple hidden neurons.
The network is trying to detect kittens everywhere,
and the same pixel could fit a kitten in one location
but not another, leading to its overall effect on the
kitten neuron to be 0

21

Typical Gradient of a Neuron

22

… …

Cat eye
at (200,

300)

Dog ear
at (180, 320)

CAT DOG

… … …

Pixel provides both
positive (via a cat eye
detection) and
negative (via absence
of cat eye detection)
evidence for a cat in
the image

Guided Backpropagation

• Idea: neurons act like detectors of particular image
features

• We are only interested in what image features the
neuron detects, not in what kind of stuff it doesn’t
detect

23

Guided Backpropagation

• Instead of computing
𝜕𝑝𝑚

𝜕𝑥
,

only consider paths from 𝑥
to 𝑝𝑚 where the weights are
positive and all the units are
positive (and greater than 0).
Compute this modified

version of
𝜕𝑝𝑚

𝜕𝑥

• Only consider evidence for
neurons being active, discard
evidence for neurons having
to be not active

24

Guided Backpropagation:
Computation
• When performing the backward pass we already

know "
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙,𝑖)
" for every 𝑖

• If
𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)
< 0, set it to 0

• Compute “
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙−1,𝑗)
“ = = σ𝑖 "

𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙,𝑖)
""

𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)
"

• Repeat

• If a path contains negative weights, it will be
ignored, since a negative weight corresponds to a

negative
𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)

25

Guided Backpropagation
Compute gradient,
zero out negatives,
backpropagate

Compute gradient,
zero out negatives,
backpropagate

Compute gradient,
zero out negatives,
backpropagate

26

𝑓1 𝑓2 𝑓3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑓3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑓3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑓2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑓2

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤

set to 0 if negative

set to 0 of negative

27

Guided Backpropagation

Backprop Guided Backprop

28

Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

29

What About Doing Gradient Ascent?

• Want to maximize the i-th output of the softmax
• Can compute the gradient of the i-th output of the

softmax with respect to the input x (the W’s and b’s are
fixed to make classification as good as possible)

• Perform gradient ascent on the input

30

Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)

31

32

33

34

35

Deep Dream

Deep Dream

• Idea: want to exaggerate details in the image that
look a little bit like recognizable objects

• Overview
• Pick a layer in the ConvNet

• It will have some neurons that are highly activated

• There is a trade-off here: we can’t make all of them be
even more highly activated simultaneously

• Idea: make the rich get richer. Change the input x with
the most highly activated neurons influencing the
change in the input the most

Change the input x with the most highly
activated neurons influencing the change in the
input the most

• Set the gradient at the layer that we picked to be equal
to the activation at that layer
• A hack: this is not the gradient at all

• Backpropagate the gradient to figure out how much to
change the input

• Repeat

• Result: a feedback loop where the image looks more
and more like the objects that were kind of detected at
first

Neural Style Transfer

Gatys, Ecker, Bethge. “A Neural Algorithm of Artistic Style”
(http://arxiv.org/abs/1508.06576)

41

Neural Style

• Task: given an input photo I and a painting P,
produce a photo with the same contents as I, but
with the style P

• Idea: use gradient descent again to change the
input with the weights of the ConvNet constant,
with a cost function that keeps x close to I (i.e.,
preserve the content) and makes the style of x
close to the style of P

• Use a ConvNet that works for image classification
• It knows how to represent images well

42

Cost function: content

• To keep the content close to the input I, make sure that
𝑥 − 𝐼 2 stays small
• Not the best idea! The pixels might be a completely different

colour in the x, but x and I can still be similar in content

• Even better: make sure that all the activations in all the
different layers for the original image and for x stay the
same:

• Make sure that L𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑥, 𝐼) = σ𝑙,𝑖,𝑗(𝐹 𝑥 𝑖,𝑗
𝑙 − 𝐹 𝐼 𝑖,𝑗

𝑙)2 is small
• 𝐹 𝑦 (𝑖,𝑗)

𝑙 is the activation at layer l at location j in feature
map i, for input y

• Will make sure that the high-level features in the image
stay the same, too

43

Style

• Define the Gram matrix at layer las

𝐺𝑖𝑗
𝑙 (𝑦) =

𝑘

𝐹 𝑦 𝑙
𝑖𝑘
𝐹 𝑦 𝑙

𝑗𝑘

• Discovery: the Gram matrix represents the style
• 𝐺𝑖𝑗

𝑙 (𝑦) is large if at layer l, the i-th feature and the j-th
feature tend to be discovered together a lot
• (i.e., a lot of k’s for which the product of both activations is

large)

44

Style Reconstructions

• “Blue strokes at 40 degrees co-occur with blue strokes at 45 degrees?”

45

Cost function: style

• 𝐸𝑙(𝑥, 𝑃) =
1

4𝑁𝑙
2𝑀𝑙

2σ𝑖,𝑗(𝐺𝑖𝑗
𝑙 𝑥 − 𝐺𝑖𝑗

𝑙 𝑃)2

• 𝐿𝑠𝑡𝑦𝑙𝑒 𝑥, 𝑃 = σ𝑙𝑤𝑙𝐸𝑙(𝑥, 𝑃)

Divide by the size of
the layer to make sure
every layer influences
things equally for now

46

Cost function: overall

• 𝑐𝑜𝑠𝑡 𝑥, 𝐼, 𝑃 = 𝛼𝐿𝑠𝑡𝑦𝑙𝑒 𝑥, 𝑃 + 𝛽𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑥, 𝐼)

47

48

49

50

51

52

53

	Slide 1: Understanding How ConvNets See
	Slide 2: Key ideas
	Slide 3: Prerequisites
	Slide 4: Sample task
	Slide 5: The Simplest Possible Neural Network for Face Recognition
	Slide 6: An interpretation
	Slide 7: Visualizing the parameters W
	Slide 8: One hidden layer
	Slide 9: Visualizing a One-Hidden-Layer NN
	Slide 10: What Does a Neuron Do in a ConvNet? (1)
	Slide 11: What Does a Neuron Do in a ConvNet? (2)
	Slide 12: What Does a Neuron Do in a ConvNet? (3)
	Slide 13: What Does a Neuron Do in a ConvNet (4)
	Slide 14: Aside: Relevant Patch?
	Slide 15: This allows us to look at layers besides the first one: layer 3
	Slide 16: Layer 4
	Slide 17: Layer 5
	Slide 18: Which Pixels in the Input Affect the Neuron the Most?
	Slide 19
	Slide 20: Typical Gradient of a Neuron
	Slide 21: Typical Gradient of a Neuron
	Slide 22: Typical Gradient of a Neuron
	Slide 23: Guided Backpropagation
	Slide 24: Guided Backpropagation
	Slide 25: Guided Backpropagation: Computation
	Slide 26: Guided Backpropagation
	Slide 27
	Slide 28: Guided Backpropagation
	Slide 29: Guided Backpropagation
	Slide 30: What About Doing Gradient Ascent?
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Deep Dream
	Slide 37: Deep Dream
	Slide 38: Change the input x with the most highly activated neurons influencing the change in the input the most
	Slide 39
	Slide 40
	Slide 41: Neural Style Transfer
	Slide 42: Neural Style
	Slide 43: Cost function: content
	Slide 44: Style
	Slide 45: Style Reconstructions
	Slide 46: Cost function: style
	Slide 47: Cost function: overall
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

