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Key ideas

• Can understand the mechanism of how the 
network computes an output by thinking about 
how individual neurons are computed

• The gradient of the cost with respect to a variable
indicates how important the variable is

• Can differentiate a cost with respect to the input
rather than the weights, and then change the input
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Prerequisites

• Understand what a gradient does

• Understand how backpropagation works

• Convolutional layers and ReLU
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Sample task

• Training set: 6 actors, with 100 64 × 64 photos of faces for each

• Test set: photos of faces of the same 6 actors

• Want to classify each face as one of ['Fran Drescher', 'America Ferrera', 'Kristin 
Chenoweth', 'Alec Baldwin', 'Bill Hader', 'Steve Carell']



The Simplest Possible Neural 
Network for Face Recognition

outputs (one per actor)𝑧1

input vector 

(flattened 64x64 

Image)

𝑧3 𝑧6

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

𝑧𝑘 = 𝜎 

𝑗=1

4096

𝑊 1,𝑗,𝑘 𝑥𝑗 + 𝑏 1,𝑘

= 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘
𝑥

𝜎(𝑥)

ℎ𝜃 = ℎ𝑊,𝑏



An interpretation
𝑧1 is large if 𝑊 1,∗,1 ⋅ 𝑥 is large
𝑧2 is large if 𝑊 1,∗,2 ⋅ 𝑥 is large

𝑧3 is large if 𝑊 1,∗,3 ⋅ 𝑥 is large

….

𝑊 1,∗,1 , 𝑊 1,∗,2 , …, 𝑊 1,∗,6 are templates for the faces of actor 1, 
actor 2, …, actor 6

Actor 3 neuron activated: 

𝜎 𝑊 1,∗,3 ⋅ 𝑥 + 𝑏 1,3 is large

input vector 

(flattened 64x64 

Image)

𝑧3

𝑥1 … …𝑥20 𝑥4096… … … … … … …

𝑊(1,4096,3)

𝑏(1,3)

𝑊(1,20,3)

𝑊(1,1,3) … ……



Visualizing the parameters W

Baldwin

𝑊(1,∗,1)

Carrel

𝑊(1,∗,2)
Hader

𝑊(1,∗,3)
Chenoweth

𝑊(1,∗,6)

Drescher

𝑊(1,∗,5)
Ferrera

𝑊(1,∗,4)



One hidden layer

outputs (one per actor)

ℎ1 ℎ3 ℎ𝐾

𝑥1 … …𝑥20 𝑥4096

… …

… … … … … … …

𝑊(1,1,1)

𝑏(1,1)

𝑊(1,4096,6)

𝑏(1,3)

input vector 
(flattened 
64x64 image)

……

𝑧1 𝑧4… … 𝑧6

𝑊(2,𝐾,4)
𝑊(2,1,1)

𝑏(2,4)

ℎ𝑘 = 𝜎 𝑊 1,∗,𝑘 ⋅ 𝑥 + 𝑏 1,𝑘

𝑧𝑚 = 𝜎(𝑊 2,∗,𝑚 ⋅ ℎ + 𝑏 2,𝑚 )

K hidden 

units



Visualizing a One-Hidden-Layer 
NN



What Does a Neuron Do in a ConvNet? (1)

• A neuron in the first hidden layer computes a 
weighted sum of pixels in a patch of the image for 
which it is responsible

K. Fukushima, “Neurocognitron: A self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position” (Biol. 
Cybernetics 1980)
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What Does a Neuron Do in a ConvNet? (2)

• For neurons in the first hidden layer, we can 
visualize the weights.

Example weights for fully-
connected single-hidden layer 
network for faces, for one 
neuron

Weights for 9 features in the 
first convolutional layer of a 
layer for classifying ImageNet 
images

Zeiler and Fergus, “Visualizing and Understanding 
Convolutional Networks”
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What Does a Neuron Do in a ConvNet? (3)

• The neuron would be activated the most if the 
input looks like the weight matrix

• These are called “Gabor-like filters”

• The colour is due to the input being 3D. We 
visualize the strength of the weight going from each 
of the R, G, and B components
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What Does a Neuron Do in a ConvNet (4)

• Another to figuring out what kind of images active 
the neuron: just try lots of images in a dataset, and 
see which ones activate the neuron the most

Zeiler and Fergus, “Visualizing and Understanding 
Convolutional Networks”

For each feature, fine the 9 
images that produce the highest 
activations for the neuron, and 
crop out the relevant patch 13



Aside: Relevant Patch?

• Each neuron is affected by some small patch in the 
layer below

• Can recursively figure out what patch in the input 
layer each neuron is affected

• Neurons in the top layers are affected by (almost) 
the entire image
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This allows us to look at layers 
besides the first one: layer 3

15



Layer 4
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Layer 5

17



Which Pixels in the Input Affect 
the Neuron the Most?
• Rephrased: which pixels would make the neuron 

not turn on if they had been different?

• In other words, for which inputs is
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕𝑥𝑖
large?
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𝑥1 𝑥2 𝑥3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular 
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑥3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑥2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑥3

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤
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Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:
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Typical Gradient of a Neuron

• Mostly zero away from the object,
but the results are not very satisfying

• Every pixel influences the neuron via
multiple hidden neurons. 
The network is trying to detect kittens everywhere, 
and the same pixel could fit a kitten in one location 
but not another, leading to its overall effect on the 
kitten neuron to be 0
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Typical Gradient of a Neuron
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… …

Cat eye
at (200, 

300)

Dog ear
at (180, 320)

CAT DOG

… … …

Pixel provides both 
positive (via a cat eye 
detection) and 
negative (via absence 
of cat eye detection) 
evidence for a cat in 
the image



Guided Backpropagation

• Idea: neurons act like detectors of particular image 
features

• We are only interested in what image features the 
neuron detects, not in what kind of stuff it doesn’t 
detect
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Guided Backpropagation

• Instead of computing  
𝜕𝑝𝑚

𝜕𝑥
, 

only consider paths from 𝑥
to 𝑝𝑚 where the weights are 
positive and all the units are 
positive (and greater than 0). 
Compute this modified 

version of 
𝜕𝑝𝑚

𝜕𝑥

• Only consider evidence for 
neurons being active, discard 
evidence for neurons having 
to be not active
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Guided Backpropagation: 
Computation
• When performing the backward pass we already 

know "
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙,𝑖)
" for every 𝑖

• If 
𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)
< 0, set it to 0

• Compute “
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙−1,𝑗)
“ = = σ𝑖 "

𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕ℎ(𝑙,𝑖)
""

𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)
"

• Repeat

• If a path contains negative weights, it will be 
ignored, since a negative weight corresponds to a 

negative 
𝜕ℎ(𝑙,𝑖)

𝜕ℎ(𝑙,−1 𝑗)
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Guided Backpropagation
Compute gradient, 
zero out negatives, 
backpropagate

Compute gradient, 
zero out negatives, 
backpropagate

Compute gradient, 
zero out negatives, 
backpropagate
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𝑓1 𝑓2 𝑓3

𝑊(1) 𝑊(1)𝑊(2)

𝑊(2)

𝑠1 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖
𝑠2 =

𝑖=1

2

𝑊(𝑖)𝑥𝑖+1

𝑟𝑒𝑙𝑢1 𝑟𝑒𝑙𝑢2

ℎ1 ℎ2

𝑚𝑎𝑥𝑟𝑒𝑙𝑢 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ℎ3Assume that for the particular 
image 𝑥, ℎ2 > ℎ3

𝜕ℎ3
𝜕ℎ2

= 1 𝑖𝑓 ℎ1 < ℎ2

𝜕ℎ3
𝜕𝑟𝑒𝑙𝑢2

=
𝜕ℎ3
𝜕ℎ2

𝜕ℎ2
𝜕𝑟𝑒𝑙𝑢2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑠2

=
𝜕ℎ3

𝜕𝑟𝑒𝑙𝑢2

𝜕𝑟𝑒𝑙𝑢2
𝜕𝑠2

= ቊ
1, 𝑠2 > 0
0, 𝑜/𝑤

𝜕ℎ3
𝜕𝑓3

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑓3

= ൝
𝑊(2), 𝑠2 > 0

0, 𝑜/𝑤
𝜕ℎ3
𝜕𝑓2

=
𝜕ℎ3
𝜕𝑠2

𝜕𝑠2
𝜕𝑓2

= ൝
𝑊(1), 𝑠2 > 0

0, 𝑜/𝑤

set to 0 if negative

set to 0 of negative
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Guided Backpropagation

Backprop Guided Backprop
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Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)
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What About Doing Gradient Ascent?

• Want to maximize the i-th output of the softmax
• Can compute the gradient of the i-th output of the 

softmax with respect to the input x (the W’s and b’s are 
fixed to make classification as good as possible)

• Perform gradient ascent on the input
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Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)
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Deep Dream



Deep Dream

• Idea: want to exaggerate details in the image that 
look a little bit like recognizable objects

• Overview
• Pick a layer in the ConvNet

• It will have some neurons that are highly activated

• There is a trade-off here: we can’t make all of them be 
even more highly activated simultaneously

• Idea: make the rich get richer. Change the input x with 
the most highly activated neurons influencing the 
change in the input the most



Change the input x with the most highly 
activated neurons influencing the change in the 
input the most

• Set the gradient at the layer that we picked to be equal 
to the activation at that layer
• A hack: this is not the gradient at all

• Backpropagate the gradient to figure out how much to 
change the input

• Repeat

• Result: a feedback loop where the image looks more 
and more like the objects that were kind of detected at 
first







Neural Style Transfer

Gatys, Ecker, Bethge. “A Neural Algorithm of Artistic Style” 
(http://arxiv.org/abs/1508.06576)
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Neural Style

• Task: given an input photo I and a painting P, 
produce a photo with the same contents as I, but 
with the style P

• Idea: use gradient descent again to change the 
input with the weights of the ConvNet constant, 
with a cost function that keeps x close to I (i.e., 
preserve the content) and makes the style of x 
close to the style of P

• Use a ConvNet that works for image classification
• It knows how to represent images well
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Cost function: content

• To keep the content close to the input I, make sure that 
𝑥 − 𝐼 2 stays small
• Not the best idea! The pixels might be a completely different 

colour in the x, but x and I can still be similar in content

• Even better: make sure that all the activations in all the 
different layers for the original image and for x stay the 
same:

• Make sure that L𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑥, 𝐼) = σ𝑙,𝑖,𝑗(𝐹 𝑥 𝑖,𝑗
𝑙 − 𝐹 𝐼 𝑖,𝑗

𝑙 )2 is small
• 𝐹 𝑦 (𝑖,𝑗)

𝑙 is the activation at layer l at location j in feature 
map i, for input y

• Will make sure that the high-level features in the image 
stay the same, too
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Style

• Define the Gram matrix at layer las

𝐺𝑖𝑗
𝑙 (𝑦) =

𝑘

𝐹 𝑦 𝑙
𝑖𝑘
𝐹 𝑦 𝑙

𝑗𝑘

• Discovery: the Gram matrix represents the style
• 𝐺𝑖𝑗

𝑙 (𝑦) is large if at layer l, the i-th feature and the j-th
feature tend to be discovered together a lot 
• (i.e., a lot of k’s for which the product of both activations is 

large)
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Style Reconstructions

• “Blue strokes at 40 degrees co-occur with blue strokes at 45 degrees?”
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Cost function: style

• 𝐸𝑙(𝑥, 𝑃) =
1

4𝑁𝑙
2𝑀𝑙

2σ𝑖,𝑗(𝐺𝑖𝑗
𝑙 𝑥 − 𝐺𝑖𝑗

𝑙 𝑃 )2

• 𝐿𝑠𝑡𝑦𝑙𝑒 𝑥, 𝑃 = σ𝑙𝑤𝑙𝐸𝑙(𝑥, 𝑃)

Divide by the size of 
the layer to make sure 
every layer influences 
things equally for now
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Cost function: overall

• 𝑐𝑜𝑠𝑡 𝑥, 𝐼, 𝑃 = 𝛼𝐿𝑠𝑡𝑦𝑙𝑒 𝑥, 𝑃 + 𝛽𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑥, 𝐼)
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