
Recommender Systems with GNN

ECE324, Winter 2022

Michael Guerzhoy
1

Slides from Jure Leskovec

Recommender systems

• Information explosion in the era of the Internet
• 10K+ movies in Netflix

• 12M products in Amazon

• 70M+ music tracks in Spotify

• 10B+ videos on YouTube

• 200B+ pins (images) in Pinterest

• Personalized recommendation helps users
effectively explore content of interest

2

Bipartite graph

• Recommender systems
can be naturally
modelled as a bipartite
graph
• Nodes: users and items

• Edges: interaction
between users and items
• Clicks, purchases, reviews

etc.

• Often have a timestamp

3

Task

• Given past user-item
interactions, predict
new items a user will
interact with
• Can be case as link

prediction: predict new
interaction given past
edges

4

Top-K recommendations

• Recommend K items for each user
• K needs to be low-is for the recommendations to make

sense

• Typically 10-100

• Goal: as many positive items as possible to be in
the top-K recommendations
• Positive items: items that the user will interact with in

the future

• Evaluation metric: Recall@K

5

Recall@K

• For each user u,
• Let 𝑃𝑢 be a set of positive items the user will interact with in

the future
• Let 𝑅𝑢 be the set of items recommended by the model

• In top-K recommendation, 𝑅𝑢 = 𝐾
• Items the user has already interacted with are excluded

• Recall@K for user u is 𝑃𝑢 ∩ 𝑅𝑢 /|𝑃𝑢|

• Recall@K for the dataset is the averaged Recall@K
across users

6

Score function

• To get the top-K items,
define a score function
for user item
interaction
• For 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, we

need to get a real-
valued scalar
𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑣)

• K items with the largest
scores for a given user u
(excluding already-
iteracted items) are
then recommended

7

Emebedding-Based Models

• Embedding-based
models for scoring
user-item interactions:
• Compute embeddings
𝑧𝑢 ∈ 𝑅𝑑 and 𝑧𝑣 ∈ 𝑅𝑑

for pairs (u, v) of users
and items

• Define 𝑓𝜃 ⋅,⋅ : 𝑅𝑑 ×
𝑅𝑑 → 𝑅 to be a
parameterized function

• 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑣 =
𝑓𝜃(𝑧𝑢, 𝑧𝑣)

8

Training objective

• Optimize 𝑧𝑢 𝑢∈𝑈, 𝑧𝑣 𝑣∈𝑉 , 𝜃 to achieve high
recall@K on seen (i.e., training) user-item
interactions

• Hope that would lead to high recall@K on unseen
(i.e., test interactions)

9

Surrogate Loss functions

• recall@K is not a differentiable function, so cannot
apply gradient-based optimization

• User surrogate functions to enable gradient based
optimization
• Binary loss

• Bayesian Personalized Ranking (BPR) loss

• Surrogate losses should be
• Differentiable

• Aligned with the original training objective

10

Binary loss

• Sum over the positive edges 𝐸 and negative edges 𝐸𝑛𝑒𝑔
• Negative edges are those that are absent in the training set

• Make 𝑓𝜃 𝑢, 𝑣 high for observed edges (u, v), and low
otherwise

• Aligns with recall@K in the sense that we are scoring
positive edges higher

11

Binary loss: issue
• Binary loss pushes all

negative edges down
and all positive edges
up

• But we can imagine a
perfect recommender
where some negative
edges are higher than
some positive edges
• Only need for positive

edges to be higher than
negative edges for each
particular user

12
Perfect recall@K, but high binary loss

BPR loss

• Bayesian Personalized Ranking (BPR) loss is a
personalized surrogate loss that aligns better with
the recall@K metric

• For each user 𝑢∗ ∈ 𝑈, define the rooted
positive/negative edges as
• Positive edges: 𝐸 𝑢∗ = 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝐸

• Negative edges: 𝐸𝑛𝑒𝑔 𝑢∗ = 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝐸𝑛𝑒𝑔

13

Training objective: BPR loss

• For each user 𝑢∗, we want the scores of rooted
positive edges 𝐸(𝑢∗) to be higher than those of
rooted negative edges 𝐸𝑛𝑒𝑔(𝑢

∗)
• Aligns with what we want from maxmimizing recall@k

• BPR loss for user 𝑢∗:

• Final BPR Loss:

14

BPR loss: mini-batch training

• Sample a subset of users
𝑈𝑚𝑖𝑛 ⊂ 𝑈
• For each user 𝑢∗ ∈ 𝑈𝑚𝑖𝑛𝑖,

we sample one positive
item 𝑣𝑝𝑜𝑠 and a set of
sampled negative items
𝑉𝑛𝑒𝑔

• Mini-batch loss:

15

Embedding Models for
Recommender Systems
• Underlying idea:

“collaborative filtering”
• Recommend items for a user

by collecting preferences of
many other similar users

• Similar users tend to prefer
similar items

• Graph embeddings capture
similarity between
users/items

16

Embedding Models for
Recommender Systems
• Embedding-based models can capture similarity of

users/items!
• Low-dimensional embeddings cannot simply memorize

all user-item interaction data

• Embeddings are forced to capture similarity between
users/items to fit the data

• This allows the models to make effective prediction on
unseen user-item interactions

17

Neural Graph Collaborative
Filtering
• Explicitly incorporates high-order graph structure

(i.e., neighbourhood information rather than just
edges) when generating user/item embeddings

• Key idea: user a GNN to generate graph-aware
user/item embeddings

18

NGCF Framework

• Start with a user-item
bipartite graph

• NGCF framework:
• Prepare shallow learnable

embedding for each node
• User multi-layer GNNs to

propagate embeddings along
the bipartite graph
• Capture higher-order structure

• Final embeddings are explicitly
graph-aware

• Jointly learn:
• Shallow user/item embeddings
• GNN’s parameters

19

NGCF learning

• Initialize shallow embeddings

• Iteratively update node
embedding using neighbouring
embeddings

• AGGR() can be MEAN(), COMBINE(x, y) can be
ReLU(Linear(Contact(x, y))

20

NGCF learning

• After K rounds of aggregation, get final user/item

embeddings ℎ𝑢
(𝐾)

and ℎ𝑣
(𝑘)

• 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑣 = ℎ𝑢
(𝐾)

⋅ ℎ𝑣
(𝑘)

• Can now compute BPR and backpropagate

21

PinSAGE: Scaling Up NGCF

• Data: Pinterest pins

• Pin embedding unifies visual, textual, and graph
information

• Embeddings for new content available within
seconds

22

PinSAGE: Scaling Up

• Shared negative samples across users in a mini-
batch

• Mining for hard negative samples

• Curriculum learning

• Mini-batch training of GNNs on a large graph

23

Shared negative samples

• In BPR loss, we sampled a set of negative edges for
each positive edge

• Costs O(𝑈𝑚𝑖𝑛𝑖 𝑉𝑛𝑒𝑔) to sample and compute the
loss for the negative edges

• Idea: sample 𝑉𝑛𝑒𝑔 = {𝑣𝑛𝑒𝑔} across all users in the
minibatch 𝑈𝑚𝑖𝑛𝑖

• Only compute 𝑉𝑛𝑒𝑔 embeddings

24

Curriculum learning

• Idea: make the negative samples gradually harder
in the process of training

• At the n-th epoch, add n-1 hard negative items

• The model will gradually learn to make finer-
grained predictions

25

Curriculum learning II

• Idea: use harder and hard negative samples

26

Hard negatives

• Most negatives that are sampled are “easy
negatives”

• Hard negatives are nodes that are close (but not
connected) to the user node in the graph

• Obtain hard negatives for u:
• Compute Personalized Page Rank (PPR) for user u

• PPR is the probability of v occurs on a random walk starting at u

• Sample item notes that are ranked high but not too high by PPR
to U
• Item nodes that are close not not connected to user node

27

