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Recommender systems

• Information explosion in the era of the Internet
• 10K+ movies in Netflix 

• 12M products in Amazon

• 70M+ music tracks in Spotify

• 10B+ videos on YouTube

• 200B+ pins (images) in Pinterest

• Personalized recommendation helps users 
effectively explore content of interest
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Bipartite graph

• Recommender systems 
can be naturally 
modelled as a bipartite 
graph
• Nodes: users and items

• Edges: interaction 
between users and items
• Clicks, purchases, reviews 

etc.

• Often have a timestamp
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Task

• Given past user-item 
interactions, predict 
new items a user will 
interact with
• Can be case as link 

prediction: predict new 
interaction given past 
edges
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Top-K recommendations

• Recommend K items for each user
• K needs to be low-is for the recommendations to make 

sense

• Typically 10-100

• Goal: as many positive items as possible to be in 
the top-K recommendations
• Positive items: items that the user will interact with in 

the future

• Evaluation metric: Recall@K
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Recall@K

• For each user u,
• Let 𝑃𝑢 be a set of positive items the user will interact with in 

the future
• Let 𝑅𝑢 be the set of items recommended by the model

• In top-K recommendation, 𝑅𝑢 = 𝐾
• Items the user has already interacted with are excluded

• Recall@K for user u is 𝑃𝑢 ∩ 𝑅𝑢 /|𝑃𝑢|

• Recall@K for the dataset is the averaged Recall@K
across users
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Score function

• To get the top-K items, 
define a score function 
for user item 
interaction
• For 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, we 

need to get a real-
valued scalar 
𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑣)

• K items with the largest 
scores for a given user u
(excluding already-
iteracted items) are 
then recommended
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Emebedding-Based Models

• Embedding-based 
models for scoring 
user-item interactions:
• Compute embeddings
𝑧𝑢 ∈ 𝑅𝑑 and 𝑧𝑣 ∈ 𝑅𝑑

for pairs (u, v) of users 
and items 

• Define 𝑓𝜃 ⋅,⋅ : 𝑅𝑑 ×
𝑅𝑑 → 𝑅 to be a 
parameterized function

• 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑣 =
𝑓𝜃(𝑧𝑢, 𝑧𝑣)
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Training objective

• Optimize 𝑧𝑢 𝑢∈𝑈, 𝑧𝑣 𝑣∈𝑉 , 𝜃 to achieve high 
recall@K on seen (i.e., training) user-item 
interactions

• Hope that would lead to high recall@K on unseen 
(i.e., test interactions)
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Surrogate Loss functions

• recall@K is not a differentiable function, so cannot 
apply gradient-based optimization

• User surrogate functions to enable gradient based 
optimization
• Binary loss

• Bayesian Personalized Ranking (BPR) loss

• Surrogate losses should be
• Differentiable

• Aligned with the original training objective
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Binary loss

• Sum over the positive edges 𝐸 and negative edges 𝐸𝑛𝑒𝑔
• Negative edges are those that are absent in the training set

• Make 𝑓𝜃 𝑢, 𝑣 high for observed edges (u, v), and low 
otherwise

• Aligns with recall@K in the sense that we are scoring 
positive edges higher
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Binary loss: issue
• Binary loss pushes all

negative edges down 
and all positive edges 
up

• But we can imagine a 
perfect recommender 
where some negative 
edges are higher than 
some positive edges
• Only need for positive 

edges to be higher than 
negative edges for each 
particular user
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BPR loss

• Bayesian Personalized Ranking (BPR) loss is a 
personalized surrogate loss that aligns better with 
the recall@K metric

• For each user 𝑢∗ ∈ 𝑈, define the rooted 
positive/negative edges as
• Positive edges: 𝐸 𝑢∗ = 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝐸

• Negative edges: 𝐸𝑛𝑒𝑔 𝑢∗ = 𝑢∗, 𝑣 𝑢∗, 𝑣 ∈ 𝐸𝑛𝑒𝑔
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Training objective: BPR loss

• For each user 𝑢∗, we want the scores of rooted 
positive edges 𝐸(𝑢∗) to be higher than those of 
rooted negative edges 𝐸𝑛𝑒𝑔(𝑢

∗)
• Aligns with what we want from maxmimizing recall@k

• BPR loss for user 𝑢∗:

• Final BPR Loss:
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BPR loss: mini-batch training

• Sample a subset of users 
𝑈𝑚𝑖𝑛 ⊂ 𝑈
• For each user 𝑢∗ ∈ 𝑈𝑚𝑖𝑛𝑖, 

we sample one positive 
item 𝑣𝑝𝑜𝑠 and a set of 
sampled negative items 
𝑉𝑛𝑒𝑔

• Mini-batch loss:
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Embedding Models for 
Recommender Systems
• Underlying idea: 

“collaborative filtering”
• Recommend items for a user 

by collecting preferences of 
many other similar users

• Similar users tend to prefer 
similar items

• Graph embeddings capture 
similarity between 
users/items
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Embedding Models for 
Recommender Systems
• Embedding-based models can capture similarity of 

users/items! 
• Low-dimensional embeddings cannot simply memorize 

all user-item interaction data

• Embeddings are forced to capture similarity between 
users/items to fit the data

• This allows the models to make effective prediction on 
unseen user-item interactions
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Neural Graph Collaborative 
Filtering
• Explicitly incorporates high-order graph structure 

(i.e., neighbourhood information rather than just 
edges) when generating user/item embeddings

• Key idea: user a GNN to generate graph-aware 
user/item embeddings
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NGCF Framework

• Start with a user-item 
bipartite graph

• NGCF framework:
• Prepare shallow learnable 

embedding for each node
• User multi-layer GNNs to 

propagate embeddings along 
the bipartite graph
• Capture higher-order structure

• Final embeddings are explicitly 
graph-aware

• Jointly learn:
• Shallow user/item embeddings
• GNN’s parameters
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NGCF learning

• Initialize shallow embeddings

• Iteratively update node 
embedding using neighbouring 
embeddings

• AGGR() can be MEAN(), COMBINE(x, y) can be 
ReLU(Linear(Contact(x, y))
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NGCF learning

• After K rounds of aggregation, get final user/item 

embeddings ℎ𝑢
(𝐾)

and ℎ𝑣
(𝑘)

• 𝑠𝑐𝑜𝑟𝑒 𝑢, 𝑣 = ℎ𝑢
(𝐾)

⋅ ℎ𝑣
(𝑘)

• Can now compute BPR and backpropagate
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PinSAGE: Scaling Up NGCF

• Data: Pinterest pins

• Pin embedding unifies visual, textual, and graph 
information

• Embeddings for new content available within 
seconds
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PinSAGE: Scaling Up

• Shared negative samples across users in a mini-
batch

• Mining for hard negative samples

• Curriculum learning

• Mini-batch training of GNNs on a large graph
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Shared negative samples

• In BPR loss, we sampled a set of negative edges for 
each positive edge

• Costs O( 𝑈𝑚𝑖𝑛𝑖 𝑉𝑛𝑒𝑔 ) to sample and compute the 
loss for the negative edges

• Idea: sample 𝑉𝑛𝑒𝑔 = {𝑣𝑛𝑒𝑔} across all users in the 
minibatch 𝑈𝑚𝑖𝑛𝑖

• Only compute 𝑉𝑛𝑒𝑔 embeddings
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Curriculum learning

• Idea: make the negative samples gradually harder
in the process of training

• At the n-th epoch, add n-1 hard negative items

• The model will gradually learn to make finer-
grained predictions
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Curriculum learning II

• Idea: use harder and hard negative samples

26



Hard negatives

• Most negatives that are sampled are “easy 
negatives”

• Hard negatives are nodes that are close (but not 
connected) to the user node in the graph

• Obtain hard negatives for u:
• Compute Personalized Page Rank (PPR) for user u

• PPR is the probability of v occurs on a random walk starting at u

• Sample item notes that are ranked high but not too high by PPR 
to U
• Item nodes that are close not not connected to user node
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