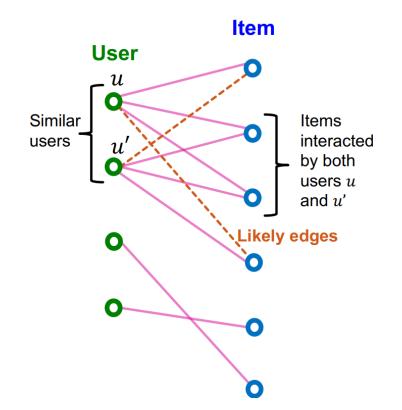
Recommender Systems with GNN



ECE324, Winter 2022 Michael Guerzhoy

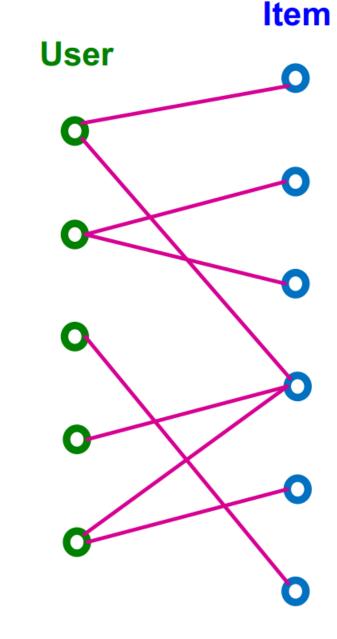
Slides from Jure Leskovec

Recommender systems

- Information explosion in the era of the Internet
 - 10K+ movies in Netflix
 - 12M products in Amazon
 - 70M+ music tracks in Spotify
 - 10B+ videos on YouTube
 - 200B+ pins (images) in Pinterest
- Personalized recommendation helps users effectively explore content of interest

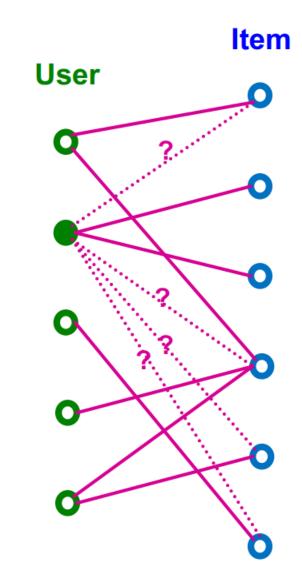
Bipartite graph

- Recommender systems can be naturally modelled as a bipartite graph
 - Nodes: users and items
 - Edges: interaction between users and items
 - Clicks, purchases, reviews etc.
 - Often have a timestamp



Task

- Given past user-item interactions, predict new items a user will interact with
 - Can be case as link prediction: predict new interaction given past edges

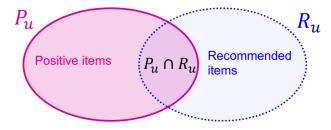


Top-K recommendations

- Recommend K items for each user
 - K needs to be low-is for the recommendations to make sense
 - Typically 10-100
- Goal: as many positive items as possible to be in the top-K recommendations
 - Positive items: items that the user will interact with in the future
- Evaluation metric: Recall@K

Recall@K

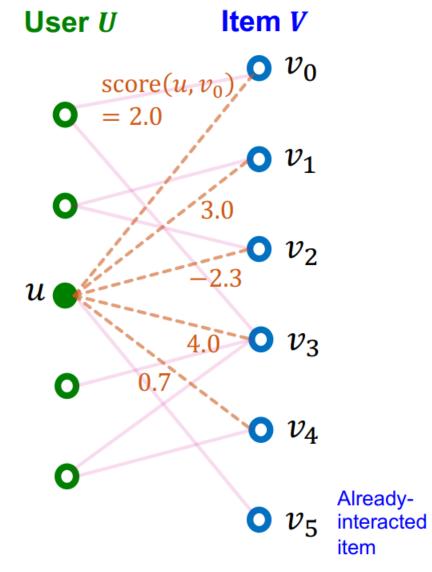
- For each user u,
 - Let P_u be a set of positive items the user will interact with in the future
 - Let R_u be the set of items recommended by the model
 - In top-K recommendation, $|R_u| = K$
 - Items the user has already interacted with are excluded



- Recall@K for user u is $|P_u \cap R_u|/|P_u|$
- Recall@K for the dataset is the averaged Recall@K across users

Score function

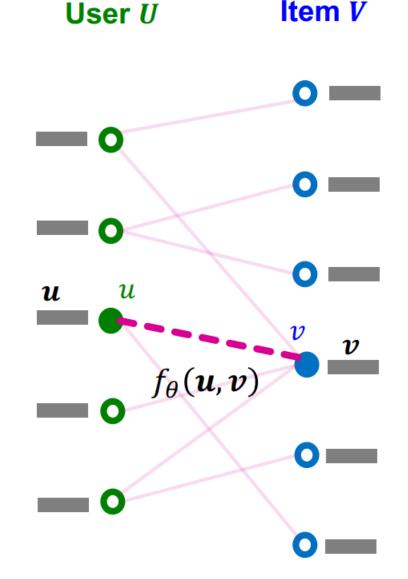
- To get the top-K items, define a score function for user item interaction
 - For u ∈ U, v ∈ V, we need to get a realvalued scalar score(u, v)
 - K items with the largest scores for a given user u (excluding alreadyiteracted items) are then recommended



For K = 2, recommended items

Emebedding-Based Models

- Embedding-based models for scoring user-item interactions:
 - Compute embeddings $z_u \in R^d$ and $z_v \in R^d$ for pairs (u, v) of users and items
 - Define $f_{\theta}(\cdot, \cdot): R^d \times R^d \to R$ to be a parameterized function
 - $score(u, v) = f_{\theta}(z_u, z_v)$



Training objective

- Optimize $\{z_u\}_{u \in U}, \{z_v\}_{v \in V}, \theta$ to achieve high recall@K on seen (i.e., training) user-item interactions
- Hope that would lead to high recall@K on unseen (i.e., test interactions)

Surrogate Loss functions

- recall@K is not a differentiable function, so cannot apply gradient-based optimization
- User *surrogate functions* to enable gradient based optimization
 - Binary loss
 - Bayesian Personalized Ranking (BPR) loss
- Surrogate losses should be
 - Differentiable
 - Aligned with the original training objective

Binary loss

- Sum over the positive edges E and negative edges E_{neg}
 - Negative edges are those that are absent in the training set

$$-\frac{1}{|\boldsymbol{E}|}\sum_{(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}}\log\left(\sigma(f_{\theta}(\boldsymbol{u},\boldsymbol{v}))\right) - \frac{1}{|\boldsymbol{E}_{\operatorname{neg}}|}\sum_{(\boldsymbol{u},\boldsymbol{v})\in\boldsymbol{E}_{\operatorname{neg}}}\log\left(1-\sigma(f_{\theta}(\boldsymbol{u},\boldsymbol{v}))\right)$$

During training, these terms can be approximated using mini-batch of positive/negative edges

- Make $f_{\theta}(u, v)$ high for observed edges (u, v), and low otherwise
- Aligns with recall@K in the sense that we are scoring positive edges higher

Binary loss: issue

- Binary loss pushes all negative edges down and all positive edges up
- But we can imagine a perfect recommender where some negative edges are higher than some positive edges
 - Only need for positive edges to be higher than negative edges for each particular user

Perfect recall@K, but high binary loss

BPR loss

- Bayesian Personalized Ranking (BPR) loss is a personalized surrogate loss that aligns better with the recall@K metric
- For each user $u^* \in U$, define the rooted positive/negative edges as
 - Positive edges: $E(u^*) = \{(u^*, v) | (u^*, v) \in E\}$
 - Negative edges: $E_{neg}(u^*) = \{(u^*, v) | (u^*, v) \in E_{neg}\}$

Note: The term "Bayesian" is not essential to the loss definition. The original paper [Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts as a parameter regularization), which we omit here.

Training objective: BPR loss

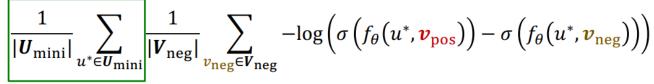
- For each user u^* , we want the scores of rooted positive edges $E(u^*)$ to be higher than those of rooted negative edges $E_{neg}(u^*)$
 - Aligns with what we want from maxmimizing recall@k
- BPR loss for user u^* :

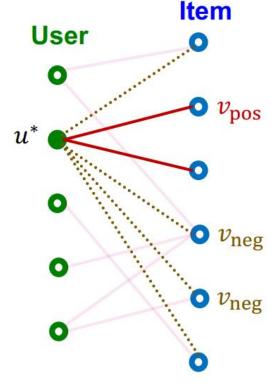
Encouraged to be positive for each user =positive edge score is higher than negative edge score $Loss(u^*) = \frac{1}{|E| \cdot |E_{neg}|} \sum_{\substack{(u^*, v_{pos}) \in E(u^*)}} \sum_{\substack{(u^*, v_{neg}) \in E_{neg}(u^*)}} -log\left(\sigma\left(f_{\theta}(u^*, v_{pos}) - f_{\theta}(u^*, v_{neg})\right)\right)$ Can be approximated using mini-batch

• Final BPR Loss: $\frac{1}{|\boldsymbol{U}|} \sum_{\boldsymbol{u}^* \in \boldsymbol{U}} \text{Loss}(\boldsymbol{u}^*)$

BPR loss: mini-batch training

- Sample a subset of users $U_{min} \subset U$
 - For each user u^{*} ∈ U_{mini}, we sample one positive item v_{pos} and a set of sampled negative items V_{neg}
- Mini-batch loss:

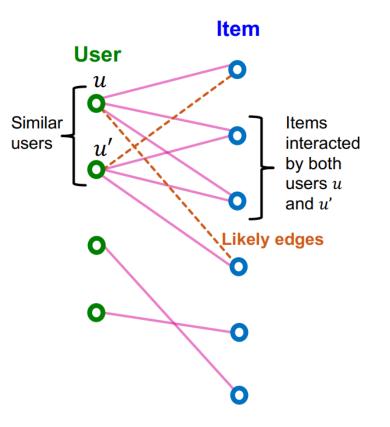




Average over users in the mini-batch

Embedding Models for Recommender Systems

- Underlying idea: "collaborative filtering"
 - Recommend items for a user by collecting preferences of many other similar users
 - Similar users tend to prefer similar items
- Graph embeddings capture similarity between users/items

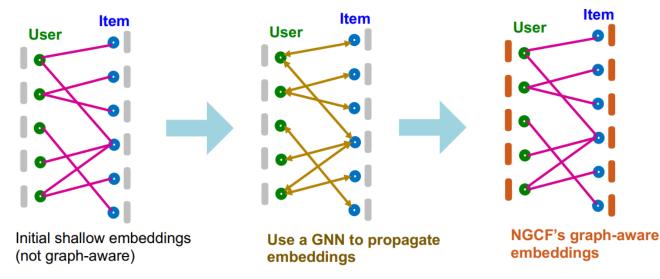


Embedding Models for Recommender Systems

- Embedding-based models can capture similarity of users/items!
 - Low-dimensional embeddings cannot simply memorize all user-item interaction data
 - Embeddings are forced to capture similarity between users/items to fit the data
 - This allows the models to make effective prediction on unseen user-item interactions

Neural Graph Collaborative Filtering

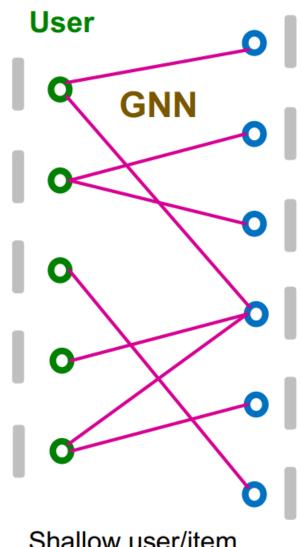
- Explicitly incorporates high-order graph structure (i.e., neighbourhood information rather than just edges) when generating user/item embeddings
- Key idea: user a GNN to generate graph-aware user/item embeddings



ltem

NGCF Framework

- Start with a user-item bipartite graph
- NGCF framework:
 - Prepare shallow learnable embedding for each node
 - User multi-layer GNNs to propagate embeddings along the bipartite graph
 - Capture higher-order structure
 - Final embeddings are explicitly graph-aware
- Jointly learn:
 - Shallow user/item embeddings
 - GNN's parameters



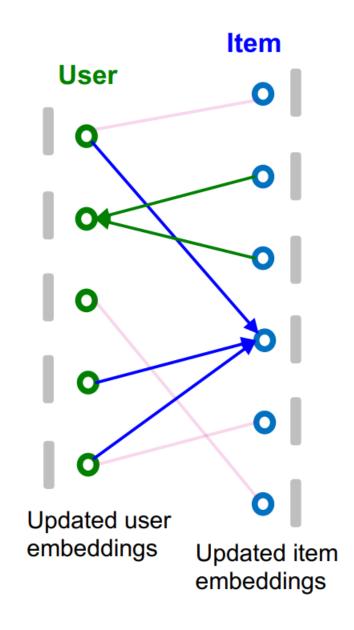
Shallow user/item embeddings (learnable)

NGCF learning

- Initialize shallow embeddings
- Iteratively update node embedding using neighbouring embeddings

$$\boldsymbol{h}_{v}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{v}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$$
$$\boldsymbol{h}_{u}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{u}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$$

 AGGR() can be MEAN(), COMBINE(x, y) can be ReLU(Linear(Contact(x, y))



NGCF learning

• After K rounds of aggregation, get final user/item embeddings $h_u^{(K)}$ and $h_v^{(k)}$

•
$$score(u, v) = h_u^{(K)} \cdot h_v^{(k)}$$

Can now compute BPR and backpropagate

PinSAGE: Scaling Up NGCF

- Data: Pinterest pins
- Pin embedding unifies visual, textual, and graph information
- Embeddings for new content available within seconds

PinSAGE: Scaling Up

- Shared negative samples across users in a minibatch
- Mining for hard negative samples
- Curriculum learning
- Mini-batch training of GNNs on a large graph

Shared negative samples

- In BPR loss, we sampled a set of negative edges for each positive edge
- Costs $O(|U_{mini}||V_{neg}|)$ to sample and compute the loss for the negative edges
- Idea: sample $V_{neg} = \{v_{neg}\}$ across all users in the minibatch U_{mini}
 - Only compute $|V_{neg}|$ embeddings

Curriculum learning

- Idea: make the negative samples *gradually harder* in the process of training
- At the n-th epoch, add n-1 hard negative items
- The model will gradually learn to make finergrained predictions

Curriculum learning II

• Idea: use harder and hard negative samples

Source pin

Positive

Easy negative

Hard negative

Hard negatives

- Most negatives that are sampled are "easy negatives"
- Hard negatives are nodes that are close (but not connected) to the user node in the graph
- Obtain hard negatives for u:
 - Compute Personalized Page Rank (PPR) for user u
 - PPR is the probability of v occurs on a random walk starting at u
 - Sample item notes that are ranked high but not too high by PPR to U
 - Item nodes that are close not not connected to user node