Recommender Systems with GNN

Item
User
u /o
(o]
Similar \\ ’,/ T ltems
users | 4,/ ST O | interacted
22 L by both
-o "N users u
“ O | andw
LN —
“
“\Likely edges
o) Likely edg
o]
° -
O
(o]

ECE324, Winter 2022

Slides from Jure Leskovec Michael Gulerzhoy

Recommender systems

* Information explosion in the era of the Internet

* 10K+ movies in Netflix

* 12M products in Amazon

e 70M+ music tracks in Spotify

e 10B+ videos on YouTube

e 200B+ pins (images) in Pinterest

* Personalized recommendation helps users
effectively explore content of interest

Item

Bipartite graph User

« Recommender systems
can be naturally
modelled as a bipartite
graph

* Nodes: users and items

e Edges: interaction
between users and items

* Clicks, purchases, reviews
etc.

e Often have a timestamp

Task

* Given past user-item
interactions, predict
new items a user will
interact with

* Can be case as link
prediction: predict new
interaction given past
edges

Top-K recommendations

e Recommend K items for each user

K heeds to be low-is for the recommendations to make
sense

* Typically 10-100

* Goal: as many positive items as possible to be in
the top-K recommendations

e Positive items: items that the user will interact with in
the future

e Evaluation metric: Recall@K

Recall@K

* For each user u,

* Let P, be a set of positive items the user will interact with in
the future
* Let R, be the set of items recommended by the model
* In top-K recommendation, |R,| = K
* Items the user has already interacted with are excluded
P, T B

Recommended "-:
items :

Positive items

* Recall@K for user uis |P, N R,|/|P,|

e Recall@K for the dataset is the averaged Recall@K
across users

Score function

* To get the top-K items,
define a score function
for user item
Interaction

e Forue U,veVl, we
need to get a real-
valued scalar
score(u,v)

e Kitems with the largest
scores for a given user u
(excluding already-
iteracted items) are
then recommended

User U itemV

v
score(u, vy) O Yo
O =20
O
O 3.0
O v,
U@ —2.3
4.0 0 v3
(o] 0.7
O vy
O
Already-
(0) Vg interacted
item

For K = 2, recommended items
7

Emebedding-Based Models

* Embedding-based
models for scoring
user-item interactions:

e Compute embeddinés
z, € R*and z, € R
for pairs (u, v) of users
and items

* Define fy(-,"): R% X
R% - Rtobea
parameterized function

e score(u,v) =

fo(zu, zy)

User U item V
O ==
mm O
O ==
L__Ne
y y O ==
_— .. _ .
TS0 =
fg(u,v)
—
O ==
mm O

Training objective

* Optimize {z, }yeu, {2, }yey, 0 to achieve high
recall@K on seen (i.e., training) user-item
Interactions

* Hope that would lead to high recall@K on unseen
(i.e., test interactions)

Surrogate Loss functions

* recall@K is not a differentiable function, so cannot
apply gradient-based optimization

e User surrogate functions to enable gradient based
optimization
* Binary loss
e Bayesian Personalized Ranking (BPR) loss

e Surrogate losses should be
 Differentiable
* Aligned with the original training objective

Binary loss

* Sum over the positive edges E and negative edges Ey.
* Negative edges are those that are absent in the training set

1
D log(0(fo(u,v)) -

|E| (u,v)EE

A J/ U J/
Y Y

During training, these terms can be approximated
using mini-batch of positive/negative edges

* Make fg(u, v) high for observed edges (u, v), and low
otherwise

e Aligns with recall@K in the sense that we are scoring
positive edges higher

11

Binary loss: issue

* Binary loss pushes all
negative edges down
and all positive edges

up

* But we can imagine a
perfect recommender
where some negative

edges are higher than
some positive edges

* Only need for positive
edges to be higher than
negative edges for each
particular user

Item
User
Uo 2.0
U1 1.0
4.0
%1

—— Positive edge

Negative edge

Perfect recall@K, but high binary loss

BPR loss

e Bayesian Personalized Ranking (BPR) loss is a

personalized surrogate loss that aligns better with
the recall@K metric

* For each user u™ € U, define the rooted
positive/negative edges as
* Positive edges: E(u*) = {(u*,v)|(u*,v) € E}
* Negative edges: E.,(u*) = {(u*,v)|(u*, V) € Eneg}

Note: The term “Bayesian” is not essential to the loss definition. The original paper

[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts
as a parameter regularization), which we omit here.

13

Training objective: BPR loss

* For each user u*, we want the scores of rooted
positive edges E(u™) to be higher than those of
rooted negative edges E;.,(u”)

* Aligns with what we want from maxmimizing recall@k
* BPR loss for user u™:

Encouraged to be positive for each user
=positive edge score is higher than negative edge score
A

[4 A}

1
LOSS(U.*) = W Z Z —lOg (G (f@ (u*, vpos) - fG (u*: Vneg)))
nee iu*nvpos)EE(u*) (U*ﬂ)neg)EEncg(u*)

)

|
Can be approximated using mini-batch

1 *
Zu*EU LOSS(u)

 Final BPR Loss: m

BPR loss: mini-batch training

 Sample a subset of users

Umin cU

* For each user u™ € Uiy,
we sample one positive
item v, and a set of
sampled negative items

Vneg
 Mini-batch loss:

u*€Umini Vneg€Vneg

Average over users
in the mini-batch

Item
User o

Upos

O Vneg
o .
O Vpeg
6
o

w;nn > |v;g| > —log(a(fe(u*,vpos))—a(fe(u*,vneg)))

15

Embedding Models for
Recommender Systems

* Underlying idea: y ltem
. . . ser
“collaborative filtering” _u 0
* Recommend items for a user simir | Q\ o 'tems
by collecting preferences of ~ use's g byt
many other similar users - N | e
* Similar users tend to prefer o \Likely edges
similar items e
* Graph embeddings capture o — o

similarity between
users/items o

Embedding Models for
Recommender Systems

* Embedding-based models can capture similarity of
users/items!

* Low-dimensional embeddings cannot simply memorize
all user-item interaction data

 Embeddings are forced to capture similarity between
users/items to fit the data

* This allows the models to make effective prediction on
unseen user-item interactions

Neural Graph Collaborative
Filtering

* Explicitly incorporates high-order graph structure
(i.e., neighbourhood information rather than just
edges) when generating user/item embeddings

e Key idea: user a GNN to generate graph-aware
user/item embeddings

Item Item Item
User User User

Initial shallow embeddings Use a GNN to propagate NGCF’s 'graph-aware
(not graph-aware) embeddings embeddings

18

NGCF Framework

* Start with a user-item
bipartite graph

* NGCF framework:

* Prepare shallow learnable
embedding for each node

* User multi-layer GNNs to
propagate embeddings along
the bipartite graph

e Capture higher-order structure
* Final embeddings are explicitly
graph-aware
* Jointly learn:
* Shallow user/item embeddings
 GNN’s parameters

Item
User

GNN

Shallow user/item
embeddings (learnable)

19

NGCF learning

* Initialize shallow embeddings

* lteratively update node
embedding using neighbouring
embeddings
R = COMBINE (hfj‘),AGGR ({h,ﬁ")}uEN(v)))

(k+1) _ (k) (k)
h = COMBINE (h ,AGGR(h)
u (u { v }vEN(u))

* AGGR() can be MEAN(), COMBINE(x, y) can be
ReLU(Linear(Contact(x, y))

Item

User o
(o

O

O

Updated user

embeddings Updated item
embeddings

20

NGCF learning

» After K rounds of aggregation, get final user/item
embeddings hg{) and h,(,k)

* score(u,v) = hfLK) - hf,k)

e Can now compute BPR and backpropagate

PInSAGE: Scaling Up NGCF

* Data: Pinterest pins

* Pin embedding unifies visual, textual, and graph
information

* Embeddings for new content available within
seconds

PinSAGE: Scaling Up

* Shared negative samples across users in a mini-
batch

* Mining for hard negative samples
* Curriculum learning
* Mini-batch training of GNNs on a large graph

Shared negative samples

* In BPR loss, we sampled a set of negative edges for
each positive edge

* Costs O(IUminiHVnegD to sample and compute the
loss for the negative edges

* Idea: sample V.., = {Vpe4} across all users in the

* Only compute |Vneg| embeddings

Curriculum learning

* |[dea: make the negative samples gradually harder
in the process of training

* At the n-th epoch, add n-1 hard negative items

* The model will gradually learn to make finer-
grained predictions

Curriculum learning Il

* |dea: use harder and hard negative samples

Positive Easy negative Hard negative

26

Hard negatives

* Most negatives that are sampled are “easy
negatives”

* Hard negatives are nodes that are close (but not
connected) to the user node in the graph

* Obtain hard negatives for u:

 Compute Personalized Page Rank (PPR) for user u
* PPRis the probability of v occurs on a random walk starting at u

* Sample item notes that are ranked high but not too high by PPR
toU

* |tem nodes that are close not not connected to user node

