Deep Graph Networks
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General GNN Framework

B Connect GNN layers into a GNN
1  Stack layers sequentially
* Ways of adding skip connections
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B GNN Layer = Message + Aggregation
| « Different instantiations under this perspective
* GCN, GraphSAGE, GAT, ...
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Message Computation

- Message function: m'"? = MSG® (hg_l))

* Intuition: each node will create a message, which will be
sent to other nodes later

* Example: allnearlayerm() W(l)h,(f—l)
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Aggregation

* Intuition: each node will aggregate the messages
from node v’s neighbours

hY = 4660 ({m?,u e N(b)})
* Example aggregation functions: sum, mean, max
. hf,l) = sum ({ () ,U E N(v)})
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Message Aggregation: Issue

* Want h,(,l) to encode information about v
* Options:

-1 . [

* Include h,(,l ) when computing hf,)
 Compute a message from node v to itself

mg) —w® hg—l) (l) B® h(l 1)

e After aggregating from nelghbours, aggregate the
message from node v to itself, via concatenation or
summation

+ h$? = coneaT (466 ({m®,u e N)}), mP)



Putting things together: one layer

* Message: each node computes a message
mg) = MSGW (hg_l)),u € {N(v) U v}

* Aggregation: aggregate messages from neighbours
h$’ = AGG® ({m{,u € N()}, m)

* Apply nonlinearity
| (2) Aggregation
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Graph Convolutional Networks

* Graph Convolution Network layer

Message

J (2) Aggregation

& _ o (1) Message

® ® o
* Message from each neighbour: m{ = w®n{™

* Aggregation: sum, then apply activation

hl(;,l) =0 (Sum ({mg), u e N(v)})) In GCN graph is assumed to have

self-edges that are included in the
summation.
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GraphSAGE (SAmple and AgreggatE)

hg) — g (W(I) . CONCAT (hg_l),AGG ({hg_l), Yu € N(v)})))

* Message is computed within AGG()
 Two-stage aggregation:
e Stage 1: aggregate from node neighbours

h{,, < AGG ({hi ™, vu e N(v)})

e Stage 2: further aggregate over the node itself

h” « ¢ (W(‘) . CONCAT(h{ ™", hggv)))



GraphSAGE Neighbour Aggregation

* Mean: take a weighted average of neighbours

AGG =
Aggregation

(1-1)
hu
IN(¥)]| message computation

* Pool: transform neighbour vectors and apply
symmetric functions like Mean or Max

AGG =Mean ({

MLP

0™, vu e N}

Aggregation |Vessage computation

* LSTM: Apply LSTM to reshuffled neighbours
AGG =[ESTM ([h" Y, vu € n(N())])

Aggregation
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Graph Attention Networks (GAT)

z — -
hg) — O.(Z )Mw(l)ht(i 1))

u€eN (v
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IN(v)|
message to node v

e Can learn an attention function:
oy = softmax(W,[WORLD p@p1=D

e Cantry a,, = is the weighting factor of node u’s



Stacking GNN layers

» Stack GNN layers sequentially
* Input: initial raw node feature x,,

e Qutput: node embeddings hf,l) after L GNN layers
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Oversmoothing Problem

* GNN suffers from over smoothing problem

* All the node embeddings converge to the same value

* Bad because we want to use node embeddings to differentiate
nodes

* In a K-layer GNN, the receptive field of v (all the
nodes that determine the value of A(v) ) is the K-
hop neighbourhood of v

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN

Q O Node of interest Q © Node of interest
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GNN design

e Use fewer GNN layers

* Can make message/aggregation functions be deep
networks

* Can add skip connections so that close neighbours
are emphasized when computing h(v)



