Deep Graph Networks

MSA embedding Sequence-residue edges

Residues —

Confidence
Residues —» Residues Score
b » = £ ¢ §
Genetics € 20 3
— search 3 |3 — |5 — 82 ° —
& embed 2 a g
il = .
Protein sequence I | 4 Structure __, 'S
AREERES® ESAEESEEEEEEREEEES ?‘Pqulla L
[,L o
-
s Residues — Residues — .
" s X : "
L, Embed & s o g - ... ’
outer sum = g’ 1 a a
"] "~ f
= 8 o [¥ L] ./
n - » _— l —_ Pairwise :
~ distances |4
-
™ L]
- Residue-residue edges o 3D structure
-
. - edit- DeepMind
L AR R R R R RERRE R R R R RRRRRRRRRRRRRRRRRNENRSN) l.

ECE324, Winter 2022

Slides from Jure Leskovec Michael GU?rzhoy

General GNN Framework

B Connect GNN layers into a GNN
1 Stack layers sequentially
* Ways of adding skip connections

©

INPUT GRAPH

GNN Layer 1

%} -

b

connectivity ‘
GNN Layer 2 %' i

B GNN Layer = Message + Aggregation
| « Different instantiations under this perspective
* GCN, GraphSAGE, GAT, ...

e —— Do

(2) Aggregation

INPUT GRAPH

GNN Layer 1

.. ’ (1) Message

Message Computation

- Message function: m'"? = MSG® (hg_l))

* Intuition: each node will create a message, which will be
sent to other nodes later

* Example: allnearlayerm() W(l)h,(f—l)

Node v

TARGET NODE | W
| /.\\ ‘ (2) Aggregation

A

/!
/
/

‘ c:;;, o C;g (1) Message

INPUT GRAPH

Aggregation

* Intuition: each node will aggregate the messages
from node v’s neighbours

hY = 4660 ({m?,u e N(b)})
* Example aggregation functions: sum, mean, max
. hf,l) = sum ({ () ,U E N(v)})

TARGET NODE Node v
Y : " I

,f‘ e ‘ : (2) Aggregation

® QY ow ¢ (1) Message

INPUT GRAPH . . .

Message Aggregation: Issue

* Want h,(,l) to encode information about v
* Options:

-1 . [

* Include h,(,l) when computing hf,)
 Compute a message from node v to itself

mg) —w® hg—l) (l) B® h(l 1)

e After aggregating from nelghbours, aggregate the
message from node v to itself, via concatenation or
summation

+ h$? = coneaT (466 ({m®,u e N)}), mP)

Putting things together: one layer

* Message: each node computes a message
mg) = MSGW (hg_l)),u € {N(v) U v}

* Aggregation: aggregate messages from neighbours
h$’ = AGG® ({m{,u € N()}, m)

* Apply nonlinearity
| (2) Aggregation

% . ¢ (1) Message

Graph Convolutional Networks

* Graph Convolution Network layer

Message

J (2) Aggregation

& _ o (1) Message

® ® o
* Message from each neighbour: m{ = w®n{™

* Aggregation: sum, then apply activation

hl(;,l) =0 (Sum ({mg), u e N(v)})) In GCN graph is assumed to have

self-edges that are included in the
summation.

8

GraphSAGE (SAmple and AgreggatE)

hg) — g (W(I) . CONCAT (hg_l),AGG ({hg_l), Yu € N(v)})))

* Message is computed within AGG()
 Two-stage aggregation:
e Stage 1: aggregate from node neighbours

h{,, < AGG ({hi ™, vu e N(v)})

e Stage 2: further aggregate over the node itself

h” « ¢ (W(‘) . CONCAT(h{ ™", hggv)))

GraphSAGE Neighbour Aggregation

* Mean: take a weighted average of neighbours

AGG =
Aggregation

(1-1)
hu
IN(¥)]| message computation

* Pool: transform neighbour vectors and apply
symmetric functions like Mean or Max

AGG =Mean ({

MLP

0™, vu e N}

Aggregation |Vessage computation

* LSTM: Apply LSTM to reshuffled neighbours
AGG =[ESTM ([h" Y, vu € n(N())])

Aggregation

10

Graph Attention Networks (GAT)

z — -
hg) — O.(Z)Mw(l)ht(i 1))

u€eN (v

1

IN(v)|
message to node v

e Can learn an attention function:
oy = softmax(W,[WORLD p@p1=D

e Cantry a,, = is the weighting factor of node u’s

Stacking GNN layers

» Stack GNN layers sequentially
* Input: initial raw node feature x,,

e Qutput: node embeddings hf,l) after L GNN layers

¢

GNN Layer

i b

GNN Layer

{ b

GNN Layer

v

Oversmoothing Problem

* GNN suffers from over smoothing problem

* All the node embeddings converge to the same value

* Bad because we want to use node embeddings to differentiate
nodes

* In a K-layer GNN, the receptive field of v (all the
nodes that determine the value of A(v)) is the K-
hop neighbourhood of v

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN

Q O Node of interest Q © Node of interest

13

GNN design

e Use fewer GNN layers

* Can make message/aggregation functions be deep
networks

* Can add skip connections so that close neighbours
are emphasized when computing h(v)

