Graph Neural Networks

MSA embedding Sequence-residue edges

Residues —

Confidence
Residues —» Residues Score
b » = £ ¢ §
Genetics € 20 3
— search 3 |3 — |5 — 82 ° —
& embed 2 a g
il = .
Protein sequence I | 4 Structure __, 'S
AREERES® ESAEESEEEEEEREEEES ?‘Pqulla L
[,L o
-
s Residues — Residues — .
" s X : "
L, Embed & s o g - ... ’
outer sum = g’ 1 a a
"] "~ f
= 8 o [¥ L] ./
n - » _— l —_ Pairwise :
~ distances |4
-
™ L]
- Residue-residue edges o 3D structure
-
. - edit- DeepMind
L AR R R R R RERRE R R R R RRRRRRRRRRRRRRRRRNENRSN) l.

ECE324, Winter 2022

Slides from Jure Leskovec Michael GU?rzhoy

Graph tasks

* Node classification: predict a property of a node
» Categorize online users/items

* Link prediction: predict whether there is a missing
edge between two nodes
 Recommend Facebook friends

e Graph classification: categorize graphs
* Predict properties of molecules represented as graphs

* Clustering: detect if nodes form a community
* Find social circles in a social network

Node-level task: protein folding

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with

of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing

acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA

Amino Alpha Pleated Pleated Alpha
acids helix sheet sheet helix
edit: DeepMind

Node-level task: protein folding

Predict a protein’s 3D structure based on its amino acid sequence

T1037 / 6vrd T1049 / 6yaf

90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

@® Computational prediction
DeepMind

AlphaFold: idea

= Keyidea: “Spatial graph”
“ Nodes: Amino acids in a protein sequence
* Edges: Proximity between amino acids (residues)

MSA embedding Sequence-residue edges

Residues —» Residues —»
Genet £ £
sssss h — — | 8% — 520 &
& embed : i g w
l i -
e '
Protein seqguence ‘
--------------- Essssssmmnmsn
B v
= Residues — Residues —
s |lenmcamm| |k me—
Embed & » g - : B ...
outer sum = g il -
™ 61 &
" s | “ ‘an
[] ! —
“a
Residue-residue edges = 3D structure

t: DeepMind

TSN NS EE SN EEEEEERNEEEEEEERNEEEEsnmasa®

Spatial graph

Edge-level task: recommender
systems

e Users interact with items
* Watch movies, buy merchandise, listen to music
* Nodes: users and items
e Edges: user-item interactions

* E.g., watching a movie, buying an item

* Goal: recommend items to users

-— e

“You mightalso like”

ltems

Subgraph-level task: traffic
prediction

* Nodes: road segments
* Edges: connectivity between road segments
* Prediction: time of arrival

Predicting Time of Arrival with Graph Neural

Predictions

Google Maps

lll

= > O—Zji)—o
Training
data

API

= Used in Google Maps

Guugle‘Maps Candidate Goo%le Maps
routing user routes app
5¥5tem A-B

THE MODEL ARCHITECTURE FOR DETERMIMING OPTIMAL ROUTES AND THEIR TRAVEL TIME. mage credit: DeepMind

Node embedding

* Goal: learn a d-dimensional embeddings for graph
nodes
* Can then compute node similarity
e Can learn to predict links from pairs of d-dimensional

embeddings
node vector
u P
f: u —]Rd \ N J
[Rd

Feature representation,
embedding

Node similarity

* Two nodes are similar if they
* Are linked or
* Share neighbours or

* Are connected to the same kind of nodes (have similar
“structural roles”)

* Similar to the idea of words being similar if they
appear in the same context as the same kind of
words

* With an infinite corpus, we could just look at the co-
occurrence matrix, but with limited data it’s better to
learn GLoVe/word2vec embeddings

Desighing node embeddings

* Decide what we mean by “similar nodes”
* Are linked
* Share neighbours
* Appear in the same neighbourhoods

* Decide what we mean by “similar embeddings”
e zI'z, high

Random Walk embeddings

 Two nodes are similar if they appear together in random
walks on the graph

O =0
Given a graph and a starting
%1 Step 2 point, we select a neighbor of
\ it at random, and move to this
° neighbor; then we select a
e neighbor of this point at
random, and move toit, etc.

\ The (random) sequence of
o points visited this way is a
random walk on the graph.
* Want z/, z, to be high if (u, v) co-occur on a random walk
with high probability

12

Why Random Walks?

* Expressivity: the definition captures the idea of
nodes being similar if they are linked to similar
kinds of nodes

e Efficiency: don’t need to account for pairs of nodes
that don’t co-occur

* Frequently a large majority

Learning Embeddings

* Given G=(V, E)
* Goal is to learn a mapping u — z,
* Log-likelihood objective:

max ¥,y 10g P(Np (w)]2,)

e Given a node u, we want to learn feature
representations that are predictive of the nodes in
its random walk neighbourhood Ny (u)

Random Walk Optimization

* Run short fixed-length random walks starting from
each node u in the graph using some random walk
strategy R

* For each node u collect N (u), the multiset of
nodes visited on random walks starting from w.

* Optimize embeddings according to: given node u,
predict its neighbours Np (1)

max 2 log P(Np(u)|zy,)

ueu

L=~ Zuey log P(Np(w|z) =
exp(zy Zy
ZuEV ZvENR(u) o lOg(:)

Ynev exp(zi7n)

* Optimizing random walk embeddings

=)

Finding embeddings z,, that minimize L

Negative sampling

exXp (Zu Zy)
ZneV exp (Zuzn)

log(a(zuzv)) 2 log a(zuzn)) n;~Py

e Similar to what was done with word2vec

 Sample k negative nodes each with prob.
proportional to its degree

* Two considerations for k (# negative samples):
* Higher k gives more robust estimates

* Higher k corresponds to higher bias toward negative
events

* Instead of optimizing log() optimize

e Learn L with stochastic gradient descent

 Random walks strategies

* Fixed-length unbiased random walks starting from each
node

* Biased 2" order random walk R to generate network
neighborhood Ny (u)

* Flexible biased random walks that can trade off between local
and global views of the network

Two classic strategies to define a neighborhood
N (u) of a given node u:

Walk of length 3 (N (u) of size 3):
Nprs(u) = {51,5,,53} Local microscopic view

Nprs(w) = { s4,55,5:} Global macroscopic view

19

BFe:
Micro-view of
neighbourhood

RS
Macro-view of
neighbourhood

20

Interpolating BFS and DFS

* Biased fixed-length random walk R that given a
node u generates neighbourhood Ny (u)

* Two parameters:
* Return parameter p
* Return back to the previous node

* In-Out parameter q
e Moving outwards (DFS) vs. inwards (BFS)
* Intuitively, g/p is the ratio of BFS vs DFS

Walker came over edge (s{,w) and is at w.
Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

p, @ model transition probabilities
p ... return parameter
q ... "walk away” parameter

22

Walker came over edge (s{,w) and is at w.
Where to go next?

W —

BFS-like walk: Low value of p
DFS-like walk: Low value of g

Targett Prob. Dist. (s4,1)

1/p| O

1 | 1
1/g| 2
1/qg| 2

Unnormalized
transition prob.
segmented based
on distance from s,

N (u) are the nodes visited by the biased walk

23

node2vec algorithm

 Compute random walk probabilities

e Simulate r random walks of length / starting from
each note u

* Optimize the node2vec objective using SGD

* Linear-time complexity
* All 3 steps are individually parallelizable

Embedding entire graphs

* Goal: want to embed a subgraph or an entire graph
G. Graph embedding: z;

/ \\u ‘. ZG
original network embedding space

e Tasks:
* Classifying toxic v non-toxic molecules
e ldentifying anomalous graphs

Graph embeddings

* Sum embeddings of individual nodes
* Zg = ZvEG Zy
* Introduce a “virtual node” to represent the

(sub)graph and run a standard graph embedding
technique on that node

............................
...................

original network embedding space

Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

/

Output: Node embddings.
Also, we can embed subgraphs,
and graphs

27

Why deep learning on graphs is
difficult

* Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

e

Networks Images

“ No fixed node ordering or reference point
* Often dynamic and have multimodal features

28

* Assume we have a graph G

* A is the adjacency matrix (assume binary)
« X € R™*IVl is a matrix of node features

* v:anodeinV; N(v): the set of neighbours of v.

* Node features:
e Social networks: user profile, user image
* Biological networks: gene expression profiles,...

* When there is no node feature in the graph dataset:
* Indicator vectors (one-hot encoding of a node)
* Vector of constant 1: [1, 1, ..., 1]

AB G D E Feat i

2 \ A
Al B ¥ ¥ 9 06 %90 &
® ® B[t o 0o 1 1 o0 o 4
; ’@ el 1 0’04 0 0 4 b Of
© ©] 4 449 § 334 ¥

Kl g 3 9 3 0 10 o,

\ /

A Naive Approach: A fully-
connected network

* Join adjacency matrix and features
* Feed them into a deep neural net

* |ssues:
* O(|V]|) parameters
* Not applicable to graphs of different sizes
* Sensitive to node ordering

30

ldea: Convolutional network

® o
® ®
()
@ @@ @ @
® @
@ Y @ o @ @
® ® o @ ®
; L J
o @ " ® e k
@ ® ©
) [
® ° 2) ®
® g

Windows now need to be over neighbourhoods
Graphs are permutation invariant — the convolutional layer should account for that

31

= Graph does not have a canonical order of the nodes!
Adjacency matrix 4,

A B CDEF

Order plana

Order plan 2

Node features X,

Node features X,

m m oON © >

Adjacency matrix A,
A B CDEF

mm N @™ >

32

= Graph does not have a canonical order of the nodes!
Node features X; Adjacency matrix 4

Order plana

Graph and node represent tions
should be the same for

and

33

Permutation invariance

* Graph representation is the same for two order
plans

* If we learn a function f that maps a graph G=(A, X)
to vector R% then f(4,X,) = f(4,,X5)

Order plan1: 44, X4 Order plan 2: 4,, X,

For two order plans,
output of f should
be the same!

34

Permutation invariance

* A function f that mapsagraph ¢ = (4,X) to a
vector R¢

* Then if f(4;,X;) = f(4;,X;) for any order plan

and j, we say f is a permutation invariant function

Permutation equivariance

* Node representation should be the same regardless
of order plans

Order plan1: 44, X4 Order plan 2: 4,, X,

(A, X)) = f (A2, Xz) =

T MmO N W >
;,-nmUhUJ)a

Order plan1: 44, X4 Order plan 2: 45, X,

Representation vector
of the brown node A

A
B

POl Xy ="

For two order plans, the vector of node |
at the same position is the same!

f(ALXl) =

Representation vector
of the brown node E

mmonNn o >

37

Order plan1: 44, X4 Order plan 2: 4,, X,

Representation vector

c of the brown node —
f(A1.X1) —S ’ f(Aanz) =

Representation vector
of the brown node D

For two order plans, the vector of node
at the same posmon IS the same'

m m

38

Permutation Equivariance

* For node representation

e Consider learning a function f that maps a graph ¢ =
(A4, X) to a matrix R™*¢

e Graph has m nodes, each row is the embedding of a node

* If G2 is a permutation of G1 such that nodesjandj are
permuted, want

f(G1);, f(G2); = f(G2);, F(G1);

* R;isthei-th row of R

* |f this property holds for any pair of order plan i and},
we say f is a permutation equivariant function

Graph Neural Networks

* Graph neural networks consist of multiple
permutation eauivariant/invariant

“4u

Graph Neural Networks

* Are MLPs permutation invariant/equivariant? No.

Switching the order of the
iInput leads to different
outputs!

-0.53 0.15 -0.22 0.15 -0.53 -0.22 -0.53 -0.22 0.15

- 0.6 0.8 0.02

41

m O O @ »

A B C D E Feat
0 1 1 1 0 1 0
i 0 0 1 1 0 0
i 0 0 1 O 0 1
11 1 0 1 1 4
0 1 0 1 0 1 0

input layer

hidden layer 1 hidden layer 2 hidden layer 3

42

Graph Convolutional Networks

* |[dea: node’s neighbourhood defines a computation
graph

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features

Aggregate Neighbours

* Generate node embeddings based on local network

neighbourhoods

l

INPUT GRAPH

TARGET NODE .A‘..

Aggregate Neighbours

* Intuition: nodes aggregate information from their
neighbours using neural networks

TARGET NODE

INPUT GRAPH

Neural networks

o
l .‘.'

o-l:
. 4onoooocl|| L ‘_...-.-"""---._____

Deep Model: Many Layers

* Model can be of arbitrary depth:
* Nodes have embeddings at each layer
* Layer-0 embedding of node v is its input feature x,,

e Layer-k embeddings gets information from nodes that
are k hops away

Layer—O
TARGET NODE Layer_ - . XA
l .“ @ X
a Layer-2 .- ® XA
/ a + g .~. . X

INPUT GRAPH .q.i
- XA 46

Neighbourhood aggregation

* Different approaches to aggregate information
across the layers

TARGET NODE

l What is in the box’P

INPUT GRAPH

Neighbourhood aggregation

* Basic approach: average information from
neighbours and apply a neural network

(1) average messages
TARGET NODE from neighbors

INPUT GRAPH ;

(2) apply neural network

Initial O-th layer embeddings are

- _— equal to node features embedding of
/ v at layer k
h(k+1) . W
K+ = G (W + B,hY), vk € {0, .., K- 13

K Total number
.= hf,) Average of neighbor’s of layers
\ Embedding after L previous layer embeddings

: Non-linearit
layers of neighborhood Y Notice summation is a permutation
aggregation (e.g., ReLU) invariant pooling/aggregation.

49

Permutation Equivariance

* Message passing and neighbour aggregation in
graph convolution networks is permutation
Invariant

* Aggregation/message passing to a node only depends
on the neighbours

Message passing and neighbor aggregation in
graph convolution networks is permutation

equivariant. Shared NN weights
\\

_—

Permutation invariant
aggregation

Node feature X, Adjacency matrix 4,
A BCDEF

A GD

Target Node blue

M mQoON @ >

51

Model parameters

Trainable weight matrices
(i.e., what we learn)

v = Xy / \

(k+1) (k)

h =J(‘YYH E +Egh Veke{0..K—1
7 IN(’U)I) {

h(K) UeN(v)

Final node embedding

. h,gk): the hidden representation of node v at layer k
* W, :the weight matrix for neighbourhood aggregation
* Bj: weight matrix for transforming hidden vector of self

52

Model training

* Supervised loss:
min » Ly/(©), f(%))

* y(v) label of v
e L: L2 loss or cross-entropy

* Unsupervised setting
* No node label available
* Use the graph structure as the supervision

Unsupervised training

* Similar nodes should have similar embedding
* L = Y0 CE(yyy, similarity(zy, z,))

* Vup = lisu, v aresimilar, 0 otherwise

* CE is the cross entropy

e Similarity can be the dot product

* Node similarity can be based on
 Random walks
* Node proximity in the graph
* Adjacency matrix factorization

Supervised training

e Directly train the model for a supervised task (e.g.,
node classification

Safe or toxic

Safe or toxic drug?

drug?

o ® E.g., a drug-drug
interaction network

* Label: y,
* Prediction: z1'0
* Cross-entropy loss:

£ =Y Blog(o @B + (1 ~logC1 - o(ZBED)

veV
Encoder output: Classification
node embedding " weights
| Node class
label

Safe or toxic drug? .. : *

> ~a
@ "» * ..

e

Model design: overview

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

57

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH

58

Inductive Capability

* The same aggregation parameters are shared for all
nodes:

* The number of model parameters is sublinear in |V| and
we can generalize to unseen nodes!

& ©
u shared parameters TL
2 e OW" ... ‘
‘ i “ shared parameters ‘
@};-...............................:...‘....'. .. 6
XY L. ¢ ®e @
IR e Compute graph for node A Compute graph for node B

59

Inductive Capability: New Graphs

7 Zy
Train on one graph Generalize to new graph
Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

60

Inductive Capability: New Nodes

Zu
N/ N/ N/
B AR SV o

— T —
Generate embedding
Train with snapshot New node arrives for new node

e Can generate new embeddings on the fly

GNN and CNN

Convolutional neural network (CNN) layer with
3x3 filter:

Image

(O

GNN formulation: h{*? = (W, ZueNw) TNy T B;hy)), vl € {0, ...,L — 1}

CNN formulation: h§ V) = 0(Zyenw) With$ + B;h), Vi € 0, ..., L — 1}

Key difference: We can learn different W}* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (2, 1)}

