Graph Neural Networks

ECE324, Winter 2022 Michael Guerzhoy

Slides from Jure Leskovec

Graph tasks

- Node classification: predict a property of a node
 - Categorize online users/items
- Link prediction: predict whether there is a missing edge between two nodes
 - Recommend Facebook friends
- Graph classification: categorize graphs
 - Predict properties of molecules represented as graphs
- Clustering: detect if nodes form a community
 - Find social circles in a social network

Node-level task: protein folding

Every protein is made up of a sequence of amino acids bonded together These amino acids interact locally to form shapes like helices and sheets These shapes fold up on larger scales to form the full three-dimensional protein structure Proteins can interact with other proteins, performing functions such as signalling and transcribing DNA

Image credit: DeepMind

Node-level task: protein folding

Predict a protein's 3D structure based on its amino acid sequence

AlphaFold: idea

- Key idea: "Spatial graph"
 - Nodes: Amino acids in a protein sequence
 - Edges: Proximity between amino acids (residues)

Edge-level task: recommender systems

- Users interact with items
 - Watch movies, buy merchandise, listen to music
 - Nodes: users and items
 - Edges: user-item interactions
 - E.g., watching a movie, buying an item
- Goal: recommend items to users

Subgraph-level task: traffic prediction

- Nodes: road segments
- Edges: connectivity between road segments
- Prediction: time of arrival

Node embedding

- Goal: learn a d-dimensional embeddings for graph nodes
 - Can then compute node similarity
 - Can learn to predict links from pairs of d-dimensional embeddings

Node similarity

- Two nodes are similar if they
 - Are linked or
 - Share neighbours or
 - Are connected to the same kind of nodes (have similar "structural roles")
- Similar to the idea of words being similar if they appear in the same context as the same kind of words
 - With an infinite corpus, we could just look at the cooccurrence matrix, but with limited data it's better to learn GLoVe/word2vec embeddings

Designing node embeddings

- Decide what we mean by "similar nodes"
 - Are linked
 - Share neighbours
 - Appear in the same neighbourhoods
- Decide what we mean by "similar embeddings"
 - $z_v^T z_u$ high

Random Walk embeddings

• Two nodes are similar if they appear together in random walks on the graph

• Want $z_u^T z_v$ to be high if (u, v) co-occur on a random walk with high probability

Why Random Walks?

- Expressivity: the definition captures the idea of nodes being similar if they are linked to similar kinds of nodes
- Efficiency: don't need to account for pairs of nodes that don't co-occur
 - Frequently a large majority

Learning Embeddings

- Given G = (V, E)
- Goal is to learn a mapping $u \rightarrow z_u$
- Log-likelihood objective: $\max_{z} \sum_{u \in V} \log P(N_R(u)|z_u)$
- Given a node u, we want to learn feature representations that are predictive of the nodes in its random walk neighbourhood $N_R(u)$

Random Walk Optimization

- Run short fixed-length random walks starting from each node u in the graph using some random walk strategy R
- For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.
- Optimize embeddings according to: given node u, predict its neighbours $N_R(u)$

$$\max_{z} \sum_{u \in U} \log P(N_R(u)|z_u)$$

•
$$L = -\sum_{u \in U} \log P(N_R(u)|z_u) = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)})$$

Optimizing random walk embeddings

Finding embeddings z_u that minimize L

Negative sampling

- Instead of optimizing $\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$, optimize $\log(\sigma(z_u^T z_v)) - \sum_{i=1}^k \log(\sigma(z_u^T z_{n_i})), n_i \sim P_V$
- Similar to what was done with word2vec
- Sample k negative nodes each with prob. proportional to its degree
- Two considerations for k (# negative samples):
 - Higher k gives more robust estimates
 - Higher k corresponds to higher bias toward negative events

- Learn *L* with stochastic gradient descent
- Random walks strategies
 - Fixed-length unbiased random walks starting from each node
 - Biased 2nd order random walk *R* to generate network neighborhood $N_R(u)$
 - Flexible biased random walks that can trade off between local and global views of the network

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

 $N_{BFS}(u) = \{ s_1, s_2, s_3 \}$ Local microscopic view $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$ Global macroscopic view

Micro-view of neighbourhood

Interpolating BFS and DFS

- Biased fixed-length random walk R that given a node u generates neighbourhood $N_R(u)$
- Two parameters:
 - *Return* parameter p
 - Return back to the previous node
 - In-Out parameter q
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, *q/p* is the ratio of BFS vs DFS

Walker came over edge (s₁, w) and is at w. Where to go next?

1/p,1/q,1 are unnormalized probabilities

- *p*, *q* model transition probabilities
 - *p* ... return parameter
 - q ... "walk away" parameter

Walker came over edge (s₁, w) and is at w. Where to go next?

Unnormalized

transition prob. segmented based

- BFS-like walk: Low value of p
- **DFS-like** walk: Low value of q on distance from s_1 $N_R(u)$ are the nodes visited by the biased walk

node2vec algorithm

- Compute random walk probabilities
- Simulate *r* random walks of length *l* starting from each note *u*
- Optimize the node2vec objective using SGD
- Linear-time complexity
- All 3 steps are individually parallelizable

Embedding entire graphs

• Goal: want to embed a subgraph or an entire graph G. Graph embedding: Z_G

- Tasks:
 - Classifying toxic v non-toxic molecules
 - Identifying anomalous graphs

Graph embeddings

- Sum embeddings of individual nodes
 - $z_G = \sum_{v \in G} z_v$
- Introduce a "virtual node" to represent the (sub)graph and run a standard graph embedding technique on that node

Deep Graph Encoders

Why deep learning on graphs is difficult

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

- Assume we have a graph G
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
- v: a node in V; N(v): the set of neighbours of v.
- Node features:
 - Social networks: user profile, user image
 - Biological networks: gene expression profiles,...
 - When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach: A fullyconnected network

- Join adjacency matrix and features
- Feed them into a deep neural net

- Issues:
 - O(|V|) parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

Idea: Convolutional network

Windows now need to be over neighbourhoods

Graphs are permutation invariant – the convolutional layer should account for that

Graph and node representations should be the same for Order plan 1 and Order plan 2

Permutation invariance

- Graph representation is the same for two order plans
- If we learn a function f that maps a graph G=(A, X) to vector R^d then $f(A_1, X_1) = f(A_2, X_2)$

Permutation invariance

- A function f that maps a graph G = (A, X) to a vector R^d
- Then if $f(A_i, X_i) = f(A_j, X_j)$ for any order plan *i* and *j*, we say *f* is a permutation invariant function

Permutation equivariance

 Node representation should be the same regardless of order plans

Permutation Equivariance

- For node representation
- Consider learning a function f that maps a graph G = (A, X) to a matrix $R^{m \times d}$
 - Graph has *m* nodes, each row is the embedding of a node
- If G2 is a permutation of G1 such that nodes *i* and *j* are permuted, want

 $f(G1)_i, f(G2)_i = f(G2)_j, F(G1)_j$

- R_i is the i-th row of R
- If this property holds for any pair of order plan *i* and *j*, we say *f* is a permutation equivariant function

Graph Neural Networks

 Graph neural networks consist of multiple permutation equivariant/invariant

Graph Neural Networks

• Are MLPs permutation invariant/equivariant? No.

Switching the order of the

Graph Convolutional Networks

 Idea: node's neighbourhood defines a computation graph

Learn how to propagate information across the graph to compute node features

Aggregate Neighbours

 Generate node embeddings based on local network neighbourhoods

Aggregate Neighbours

• Intuition: nodes aggregate information from their neighbours using neural networks

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node v is its input feature x_v
 - Layer-k embeddings gets information from nodes that are k hops away

Neighbourhood aggregation

 Different approaches to aggregate information across the layers

Neighbourhood aggregation

• Basic approach: average information from neighbours and apply a neural network

Permutation Equivariance

- Message passing and neighbour aggregation in graph convolution networks is permutation invariant
 - Aggregation/message passing to a node only depends on the neighbours

Message passing and neighbor aggregation in graph convolution networks is permutation equivariant.

Model parameters

- $h_v^{(k)}$: the hidden representation of node v at layer k
 - W_k : the weight matrix for neighbourhood aggregation
 - B_k : weight matrix for transforming hidden vector of self

Model training

• Supervised loss:

$$\min_{\theta} \sum_{v} L(y(v), f(z_v))$$

- y(v) label of v
- L: L2 loss or cross-entropy
- Unsupervised setting
 - No node label available
 - Use the graph structure as the supervision

Unsupervised training

- Similar nodes should have similar embedding
- $L = \sum_{u,v} CE(y_{u,v}, similarity(z_u, z_v))$
- $y_{u,v} = 1$ is u, v are similar, 0 otherwise
- CE is the cross entropy
- Similarity can be the dot product
- Node similarity can be based on
 - Random walks
 - Node proximity in the graph
 - Adjacency matrix factorization

Supervised training

 Directly train the model for a supervised task (e.g., node classification

- Label: *y*_v
- Prediction: $z_v^T \theta$
- Cross-entropy loss:

Model design: overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding — Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

• Can generate new embeddings on the fly

GNN and CNN Convolutional neural network (CNN) layer with 3x3 filter:

Image

GNN formulation: $\mathbf{h}_{v}^{(l+1)} = \sigma(\mathbf{W}_{l} \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_{u}^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, \dots, L-1\}$

CNN formulation: $\mathbf{h}_{v}^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_{l}^{u} \mathbf{h}_{u}^{(l)} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, \dots, L-1\}$

Key difference: We can learn different W_l^u for different "neighbor" u for pixel v on the image. The reason is we can pick an order for the 9 neighbors using **relative position** to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (1, 1)}