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Graph tasks

• Node classification: predict a property of a node
• Categorize online users/items

• Link prediction: predict whether there is a missing 
edge between two nodes
• Recommend Facebook friends

• Graph classification: categorize graphs
• Predict properties of molecules represented as graphs

• Clustering: detect if nodes form a community
• Find social circles in a social network
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Node-level task: protein folding
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Node-level task: protein folding
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Predict a protein’s 3D structure based on its amino acid sequence



AlphaFold: idea
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Edge-level task: recommender 
systems
• Users interact with items

• Watch movies, buy merchandise, listen to music

• Nodes: users and items

• Edges: user-item interactions
• E.g., watching a movie, buying an item

• Goal: recommend items to users
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Subgraph-level task: traffic 
prediction
• Nodes: road segments

• Edges: connectivity between road segments

• Prediction: time of arrival

7



8



Node embedding

• Goal: learn a d-dimensional embeddings for graph 
nodes
• Can then compute node similarity

• Can learn to predict links from pairs of d-dimensional 
embeddings
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Node similarity

• Two nodes are similar if they 
• Are linked or

• Share neighbours or

• Are connected to the same kind of nodes (have similar 
“structural roles”)

• Similar to the idea of words being similar if they 
appear in the same context as the same kind of 
words
• With an infinite corpus, we could just look at the co-

occurrence matrix, but with limited data it’s better to 
learn GLoVe/word2vec embeddings
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Designing node embeddings

• Decide what we mean by “similar nodes”
• Are linked

• Share neighbours

• Appear in the same neighbourhoods

• Decide what we mean by “similar embeddings”
• 𝑧𝑣

𝑇𝑧𝑢 high
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Random Walk embeddings

• Two nodes are similar if they appear together in random 
walks on the graph

• Want 𝑧𝑢
𝑇𝑧𝑣 to be high if (u, v) co-occur on a random walk 

with high probability
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Why Random Walks?

• Expressivity: the definition captures the idea of 
nodes being similar if they are linked to similar 
kinds of nodes

• Efficiency: don’t need to account for pairs of nodes 
that don’t co-occur
• Frequently a large majority
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Learning Embeddings

• Given G = (V, E)

• Goal is to learn a mapping 𝑢 → 𝑧𝑢
• Log-likelihood objective: 
max
𝑧

σ𝑢∈𝑉 log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢)

• Given a node u, we want to learn feature 
representations that are predictive of the nodes in 
its random walk neighbourhood 𝑁𝑅(𝑢)
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Random Walk Optimization

• Run short fixed-length random walks starting from 
each node 𝑢 in the graph using some random walk 
strategy R

• For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset of 
nodes visited on random walks starting from 𝑢.

• Optimize embeddings according to: given node u, 
predict its neighbours 𝑁𝑅(𝑢)

max
𝑧

෍

𝑢∈𝑈

log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢)
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• L = −σ𝑢∈𝑈 log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢) =

σ𝑢∈𝑉σ𝑣∈𝑁𝑅(𝑢)
− log(

exp(𝑧𝑢
𝑇𝑧𝑣)

σ𝑛∈𝑉 exp 𝑧𝑢
𝑇𝑧𝑛

)

• Optimizing random walk embeddings

Finding embeddings 𝑧𝑢 that minimize L 
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Negative sampling

• Instead of optimizing log
exp(𝑧𝑢

𝑇𝑧𝑣)

σ𝑛∈𝑉 exp(𝑧𝑢
𝑇𝑧𝑛)

, optimize

log 𝜎 𝑧𝑢
𝑇𝑧𝑣 −෍

𝑖=1

𝑘

log 𝜎 𝑧𝑢
𝑇𝑧𝑛𝑖 , 𝑛𝑖~𝑃𝑉

• Similar to what was done with word2vec

• Sample k negative nodes each with prob. 
proportional to its degree

• Two considerations for k (# negative samples):
• Higher k gives more robust estimates
• Higher k corresponds to higher bias toward negative 

events
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• Learn L with stochastic gradient descent

• Random walks strategies
• Fixed-length unbiased random walks starting from each 

node

• Biased 2nd order random walk R to generate network 
neighborhood 𝑁𝑅 𝑢
• Flexible biased random walks that can trade off between local 

and global views of the network
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Interpolating BFS and DFS

• Biased fixed-length random walk R that given a 
node u generates neighbourhood 𝑁𝑅(𝑢)

• Two parameters:
• Return parameter p

• Return back to the previous node

• In-Out parameter q
• Moving outwards (DFS) vs. inwards (BFS)

• Intuitively, q/p is the ratio of BFS vs DFS
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node2vec algorithm

• Compute random walk probabilities

• Simulate r random walks of length l starting from 
each note u

• Optimize the node2vec objective using SGD

• Linear-time complexity

• All 3 steps are individually parallelizable
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Embedding entire graphs

• Goal: want to embed a subgraph or an entire graph 
G. Graph embedding: 𝑧𝐺
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• Tasks:
• Classifying toxic v non-toxic molecules
• Identifying anomalous graphs



Graph embeddings

• Sum embeddings of individual nodes
• 𝑧𝐺 = σ𝑣∈𝐺 𝑧𝑣

• Introduce a “virtual node” to represent the 
(sub)graph and run a standard graph embedding 
technique on that node
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Deep Graph Encoders
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Why deep learning on graphs is 
difficult
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• Assume we have a graph G

• A is the adjacency matrix (assume binary)

• 𝑋 ∈ 𝑅𝑚×|𝑉| is a matrix of node features

• 𝑣: a node in 𝑉; 𝑁(𝑣): the set of neighbours of 𝑣.

• Node features:
• Social networks: user profile, user image
• Biological networks: gene expression profiles,…
• When there is no node feature in the graph dataset:

• Indicator vectors (one-hot encoding of a node)
• Vector of constant 1: [1, 1, …, 1]
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A Naïve Approach: A fully-
connected network
• Join adjacency matrix and features

• Feed them into a deep neural net

• Issues:
• O(|V|) parameters
• Not applicable to graphs of different sizes
• Sensitive to node ordering
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Idea: Convolutional network
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Windows now need to be over neighbourhoods
Graphs are permutation invariant – the convolutional layer should account for that
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Permutation invariance

• Graph representation is the same for two order 
plans

• If we learn a function f that maps a graph G=(A, X) 
to vector 𝑅𝑑 then 𝑓 𝐴1, 𝑋1 = 𝑓(𝐴2, 𝑋2)
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Permutation invariance

• A function 𝑓 that maps a graph 𝐺 = (𝐴, 𝑋) to a 
vector 𝑅𝑑

• Then if 𝑓 𝐴𝑖 , 𝑋𝑖 = 𝑓(𝐴𝑗 , 𝑋𝑗) for any order plan i
and j, we say f is a permutation invariant function
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Permutation equivariance

• Node representation should be the same regardless 
of order plans
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Permutation Equivariance

• For node representation

• Consider learning a function f that maps a graph 𝐺 =
(𝐴, 𝑋) to a matrix 𝑅𝑚×𝑑

• Graph has m nodes, each row is the embedding of a node

• If G2 is a permutation of G1 such that nodes i and j are 
permuted, want 
𝑓 𝐺1 𝑖, 𝑓 𝐺2 𝑖 = 𝑓 𝐺2 𝑗 , 𝐹 𝐺1 𝑗

• 𝑅𝑖 is the i-th row of R

• If this property holds for any pair of order plan i and j, 
we say 𝑓 is a permutation equivariant function
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Graph Neural Networks

• Graph neural networks consist of multiple 
permutation equivariant/invariant
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Graph Neural Networks

• Are MLPs permutation invariant/equivariant? No.
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Graph Convolutional Networks

• Idea: node’s neighbourhood defines a computation 
graph
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Aggregate Neighbours

• Generate node embeddings based on local network 
neighbourhoods
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Aggregate Neighbours

• Intuition: nodes aggregate information from their 
neighbours using neural networks
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Deep Model: Many Layers

• Model can be of arbitrary depth:
• Nodes have embeddings at each layer

• Layer-0 embedding of node 𝑣 is its input feature 𝑥𝑣
• Layer-k embeddings gets information from nodes that 

are k hops away
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Neighbourhood aggregation

• Different approaches to aggregate information 
across the layers
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Neighbourhood aggregation

• Basic approach: average information from 
neighbours and apply a neural network
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Permutation Equivariance

• Message passing and neighbour aggregation in 
graph convolution networks is permutation 
invariant
• Aggregation/message passing to a node only depends 

on the neighbours
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Model parameters
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• ℎ𝑣
(𝑘)

: the hidden representation of node v at layer k
• 𝑊𝑘:the weight matrix for neighbourhood aggregation
• 𝐵𝑘: weight matrix for transforming hidden vector of self



Model training

• Supervised loss:

min
𝜃

෍

𝑣

𝐿(𝑦(𝑣), 𝑓 𝑧𝑣 )

• y(v) label of v

• L: L2 loss or cross-entropy

• Unsupervised setting 
• No node label available

• Use the graph structure as the supervision
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Unsupervised training

• Similar nodes should have similar embedding

• 𝐿 = σ𝑢,𝑣 𝐶𝐸(𝑦𝑢,𝑣, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑧𝑢, 𝑧𝑣 )

• 𝑦𝑢,𝑣 = 1 is 𝑢, 𝑣 are similar, 0 otherwise 

• CE is the cross entropy

• Similarity can be the dot product

• Node similarity can be based on
• Random walks

• Node proximity in the graph

• Adjacency matrix factorization
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Supervised training

• Directly train the model for a supervised task (e.g., 
node classification
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• Label: 𝑦𝑣
• Prediction: 𝑧𝑣

𝑇𝜃

• Cross-entropy loss:
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Model design: overview
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Inductive Capability

• The same aggregation parameters are shared for all 
nodes:
• The number of model parameters is sublinear in |V| and 

we can generalize to unseen nodes!
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Inductive Capability: New Graphs
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Inductive Capability: New Nodes
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• Can generate new embeddings on the fly



GNN and CNN
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