
Graph Neural Networks

ECE324, Winter 2022

Michael Guerzhoy
1

Slides from Jure Leskovec

Graph tasks

• Node classification: predict a property of a node
• Categorize online users/items

• Link prediction: predict whether there is a missing
edge between two nodes
• Recommend Facebook friends

• Graph classification: categorize graphs
• Predict properties of molecules represented as graphs

• Clustering: detect if nodes form a community
• Find social circles in a social network

2

Node-level task: protein folding

3

Node-level task: protein folding

4

Predict a protein’s 3D structure based on its amino acid sequence

AlphaFold: idea

5

Edge-level task: recommender
systems
• Users interact with items

• Watch movies, buy merchandise, listen to music

• Nodes: users and items

• Edges: user-item interactions
• E.g., watching a movie, buying an item

• Goal: recommend items to users

6

Subgraph-level task: traffic
prediction
• Nodes: road segments

• Edges: connectivity between road segments

• Prediction: time of arrival

7

8

Node embedding

• Goal: learn a d-dimensional embeddings for graph
nodes
• Can then compute node similarity

• Can learn to predict links from pairs of d-dimensional
embeddings

9

Node similarity

• Two nodes are similar if they
• Are linked or

• Share neighbours or

• Are connected to the same kind of nodes (have similar
“structural roles”)

• Similar to the idea of words being similar if they
appear in the same context as the same kind of
words
• With an infinite corpus, we could just look at the co-

occurrence matrix, but with limited data it’s better to
learn GLoVe/word2vec embeddings

10

Designing node embeddings

• Decide what we mean by “similar nodes”
• Are linked

• Share neighbours

• Appear in the same neighbourhoods

• Decide what we mean by “similar embeddings”
• 𝑧𝑣

𝑇𝑧𝑢 high

11

Random Walk embeddings

• Two nodes are similar if they appear together in random
walks on the graph

• Want 𝑧𝑢
𝑇𝑧𝑣 to be high if (u, v) co-occur on a random walk

with high probability

12

Why Random Walks?

• Expressivity: the definition captures the idea of
nodes being similar if they are linked to similar
kinds of nodes

• Efficiency: don’t need to account for pairs of nodes
that don’t co-occur
• Frequently a large majority

13

Learning Embeddings

• Given G = (V, E)

• Goal is to learn a mapping 𝑢 → 𝑧𝑢
• Log-likelihood objective:
max
𝑧

σ𝑢∈𝑉 log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢)

• Given a node u, we want to learn feature
representations that are predictive of the nodes in
its random walk neighbourhood 𝑁𝑅(𝑢)

14

Random Walk Optimization

• Run short fixed-length random walks starting from
each node 𝑢 in the graph using some random walk
strategy R

• For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset of
nodes visited on random walks starting from 𝑢.

• Optimize embeddings according to: given node u,
predict its neighbours 𝑁𝑅(𝑢)

max
𝑧

𝑢∈𝑈

log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢)

15

• L = −σ𝑢∈𝑈 log 𝑃(𝑁𝑅(𝑢)|𝑧𝑢) =

σ𝑢∈𝑉σ𝑣∈𝑁𝑅(𝑢)
− log(

exp(𝑧𝑢
𝑇𝑧𝑣)

σ𝑛∈𝑉 exp 𝑧𝑢
𝑇𝑧𝑛

)

• Optimizing random walk embeddings

Finding embeddings 𝑧𝑢 that minimize L

16

Negative sampling

• Instead of optimizing log
exp(𝑧𝑢

𝑇𝑧𝑣)

σ𝑛∈𝑉 exp(𝑧𝑢
𝑇𝑧𝑛)

, optimize

log 𝜎 𝑧𝑢
𝑇𝑧𝑣 −

𝑖=1

𝑘

log 𝜎 𝑧𝑢
𝑇𝑧𝑛𝑖 , 𝑛𝑖~𝑃𝑉

• Similar to what was done with word2vec

• Sample k negative nodes each with prob.
proportional to its degree

• Two considerations for k (# negative samples):
• Higher k gives more robust estimates
• Higher k corresponds to higher bias toward negative

events

17

• Learn L with stochastic gradient descent

• Random walks strategies
• Fixed-length unbiased random walks starting from each

node

• Biased 2nd order random walk R to generate network
neighborhood 𝑁𝑅 𝑢
• Flexible biased random walks that can trade off between local

and global views of the network

18

19

20

Interpolating BFS and DFS

• Biased fixed-length random walk R that given a
node u generates neighbourhood 𝑁𝑅(𝑢)

• Two parameters:
• Return parameter p

• Return back to the previous node

• In-Out parameter q
• Moving outwards (DFS) vs. inwards (BFS)

• Intuitively, q/p is the ratio of BFS vs DFS

21

22

23

node2vec algorithm

• Compute random walk probabilities

• Simulate r random walks of length l starting from
each note u

• Optimize the node2vec objective using SGD

• Linear-time complexity

• All 3 steps are individually parallelizable

24

Embedding entire graphs

• Goal: want to embed a subgraph or an entire graph
G. Graph embedding: 𝑧𝐺

25

• Tasks:
• Classifying toxic v non-toxic molecules
• Identifying anomalous graphs

Graph embeddings

• Sum embeddings of individual nodes
• 𝑧𝐺 = σ𝑣∈𝐺 𝑧𝑣

• Introduce a “virtual node” to represent the
(sub)graph and run a standard graph embedding
technique on that node

26

Deep Graph Encoders

27

Why deep learning on graphs is
difficult

28

• Assume we have a graph G

• A is the adjacency matrix (assume binary)

• 𝑋 ∈ 𝑅𝑚×|𝑉| is a matrix of node features

• 𝑣: a node in 𝑉; 𝑁(𝑣): the set of neighbours of 𝑣.

• Node features:
• Social networks: user profile, user image
• Biological networks: gene expression profiles,…
• When there is no node feature in the graph dataset:

• Indicator vectors (one-hot encoding of a node)
• Vector of constant 1: [1, 1, …, 1]

29

A Naïve Approach: A fully-
connected network
• Join adjacency matrix and features

• Feed them into a deep neural net

• Issues:
• O(|V|) parameters
• Not applicable to graphs of different sizes
• Sensitive to node ordering

30

Idea: Convolutional network

31

Windows now need to be over neighbourhoods
Graphs are permutation invariant – the convolutional layer should account for that

32

33

Permutation invariance

• Graph representation is the same for two order
plans

• If we learn a function f that maps a graph G=(A, X)
to vector 𝑅𝑑 then 𝑓 𝐴1, 𝑋1 = 𝑓(𝐴2, 𝑋2)

34

Permutation invariance

• A function 𝑓 that maps a graph 𝐺 = (𝐴, 𝑋) to a
vector 𝑅𝑑

• Then if 𝑓 𝐴𝑖 , 𝑋𝑖 = 𝑓(𝐴𝑗 , 𝑋𝑗) for any order plan i
and j, we say f is a permutation invariant function

35

Permutation equivariance

• Node representation should be the same regardless
of order plans

36

37

38

Permutation Equivariance

• For node representation

• Consider learning a function f that maps a graph 𝐺 =
(𝐴, 𝑋) to a matrix 𝑅𝑚×𝑑

• Graph has m nodes, each row is the embedding of a node

• If G2 is a permutation of G1 such that nodes i and j are
permuted, want
𝑓 𝐺1 𝑖, 𝑓 𝐺2 𝑖 = 𝑓 𝐺2 𝑗 , 𝐹 𝐺1 𝑗

• 𝑅𝑖 is the i-th row of R

• If this property holds for any pair of order plan i and j,
we say 𝑓 is a permutation equivariant function

39

Graph Neural Networks

• Graph neural networks consist of multiple
permutation equivariant/invariant

40

Graph Neural Networks

• Are MLPs permutation invariant/equivariant? No.

41

42

Graph Convolutional Networks

• Idea: node’s neighbourhood defines a computation
graph

43

Aggregate Neighbours

• Generate node embeddings based on local network
neighbourhoods

44

Aggregate Neighbours

• Intuition: nodes aggregate information from their
neighbours using neural networks

45

Deep Model: Many Layers

• Model can be of arbitrary depth:
• Nodes have embeddings at each layer

• Layer-0 embedding of node 𝑣 is its input feature 𝑥𝑣
• Layer-k embeddings gets information from nodes that

are k hops away

46

Neighbourhood aggregation

• Different approaches to aggregate information
across the layers

47

Neighbourhood aggregation

• Basic approach: average information from
neighbours and apply a neural network

48

49

Permutation Equivariance

• Message passing and neighbour aggregation in
graph convolution networks is permutation
invariant
• Aggregation/message passing to a node only depends

on the neighbours

50

51

Model parameters

52

• ℎ𝑣
(𝑘)

: the hidden representation of node v at layer k
• 𝑊𝑘:the weight matrix for neighbourhood aggregation
• 𝐵𝑘: weight matrix for transforming hidden vector of self

Model training

• Supervised loss:

min
𝜃

𝑣

𝐿(𝑦(𝑣), 𝑓 𝑧𝑣)

• y(v) label of v

• L: L2 loss or cross-entropy

• Unsupervised setting
• No node label available

• Use the graph structure as the supervision

53

Unsupervised training

• Similar nodes should have similar embedding

• 𝐿 = σ𝑢,𝑣 𝐶𝐸(𝑦𝑢,𝑣, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑧𝑢, 𝑧𝑣)

• 𝑦𝑢,𝑣 = 1 is 𝑢, 𝑣 are similar, 0 otherwise

• CE is the cross entropy

• Similarity can be the dot product

• Node similarity can be based on
• Random walks

• Node proximity in the graph

• Adjacency matrix factorization

54

Supervised training

• Directly train the model for a supervised task (e.g.,
node classification

55

• Label: 𝑦𝑣
• Prediction: 𝑧𝑣

𝑇𝜃

• Cross-entropy loss:

56

Model design: overview

57

58

Inductive Capability

• The same aggregation parameters are shared for all
nodes:
• The number of model parameters is sublinear in |V| and

we can generalize to unseen nodes!

59

Inductive Capability: New Graphs

60

Inductive Capability: New Nodes

61

• Can generate new embeddings on the fly

GNN and CNN

62

