

https://cs236g.stanford.edu/memes/1/

Wasserstein GAN

ECE324, Winter 2022 Michael Guerzhoy

Heavy math ahead, optional math in green

The objective function of the original GAN

• For a fixed generator G, the optimal discriminator is

$$D^*_G(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_g(oldsymbol{x})}$$

• Proof: we are maximizing

$$V(G, D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) d\boldsymbol{x} + \int_{\boldsymbol{z}} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) d\boldsymbol{z}$$
$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_g(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) d\boldsymbol{x}$$

For every x, the integrand is maximized at $\frac{p_{data}(x)}{p_{data}(x)+p_{g(x)}}$ (alog(y)+blog(1-y) is maximized at a/(a+b) using calculus)

Reformulating the cost function

$$C(G) = \max_{D} V(G, D)$$

= $\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{x}}} [\log(1 - D_{G}^{*}(G(\boldsymbol{z})))]$
= $\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log(1 - D_{G}^{*}(\boldsymbol{x}))]$
= $\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})}\right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})}\right]$

Divide each of the terms by two in order to get an expression in terms of KL divergences

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\|\frac{p_{\text{data}} + p_g}{2}\right) + KL\left(p_g \left\|\frac{p_{\text{data}} + p_g}{2}\right)\right)$$
$$= -\log(4) + 2 \cdot JSD\left(p_{\text{data}} \left\|p_g\right)\right)$$

(Jensen-Shannon divergence)

$$JSD(P||Q) = \frac{1}{2} (KL(P||\frac{P+Q}{2}) + KL(Q||\frac{P+Q}{2}))$$

- Another measure of how similar P and Q are
- Symmetric, unlike the KL divergence

Wasserstein Distance

- $W(P,Q) = \inf_{\gamma \in \Pi(P,Q)} E_{(x,y) \sim \gamma}[|x-y|]$
- $\Pi(P,Q)$ is the set of distributions over $R^{\dim(P)+\dim(Q)}$ whose marginal are P and Q. For $\gamma \in \Pi(P,Q)$, and densities p and Q for P, Q

 $\int \gamma(x,y) \, dx = q(y), \int \gamma(x,y) \, dy = p(x)$

Wasserstein Distance intuition

•
$$W(P,Q) = \inf_{\substack{\gamma \in \Pi(P,Q) \\ \gamma \in \Pi(P,Q)}} E_{(x,y) \sim \gamma}[|x - y|] =$$

Wasserstein Distance intuition

$$\inf_{\gamma\in\Pi(P,Q)}\int|x-y|\gamma(x,y)dxdy$$

- Want to move $\gamma(x, y)$ from x to y
- In total, move $\int \gamma(x, y) dy = p(x)$ from x move $\int \gamma(x, y) dx = q(y)$ to y

so we don't run out of mass

Wasserstein Distance dual formulation

- Theorem (Kantorovich-Rubinestein): $W(P,Q) = \sup_{\|f\|_{L} \leq 1} |E_{x \sim P}[f(x)] - E_{y \sim Q}[f(y)]|$
- A function is K-Lipschitz if for all x, y $|f(x) - f(y)| \le K|x - y|$

we write this as $||f||_L \leq K$

• Proof:

https://drive.google.com/file/d/0B6JeBUquZ5BwVl V1dEpsTHVVbTA/view?usp=sharing&resourcekey=0 -5xbvKhDXZjrYRLfqppsHuQ p. 121

Motivating example

- Let $Z \sim Unif([0, 1])$
- Let P_{θ} be the distribution $(\theta, Z) \in \mathbb{R}^2$
- $W(P_0, P_\theta) = |\theta|$
 - Using the original definition, need to move the probability mass by $|\boldsymbol{\theta}|$

•
$$JS(P_0, P_\theta) = \frac{1}{2} (KL(P_0 || \frac{P_0 + P_\theta}{2}) + KL(P_\theta || \frac{P_0 + P_\theta}{2}))$$

= $\log 2$ if $\theta \neq 0$, and 0 otherwise

Derivation for
$$KL(P_0 || \frac{P_0 + P_\theta}{2})$$

$$KL(P_0||\frac{P_0+P_\theta}{2}) = \int p_0(x,y) \log \frac{p_0(x,y)}{((p_0+p_\theta)/2)(x,y)} dxdy$$

$$p_0(x,y) \text{ is only non-zero } x=0, p_\theta(x,y) \text{ is only non}$$
zero at $x = \theta$ so the integral equals
$$\int p_0(x,y) \log \frac{p_0(x,y)}{(p_0/2)(x,y)} dxdy$$

$$= \int p_0(x,y) \log 2 \, dxdy = \log 2$$

Motivating example

- The JS distance does not provide gradient signal in the motivating example
- The Wasserstein distance does
- In the motivating example, the support for the two distribution is disjoint
 - That may be unusual
 - But it is not unusual for the distribution to be supported by different low-dimensional manifolds that intersect but otherwise don't overlap

Gradient visualization

The Wasserstein GAN

- $W(P,Q) = \sup_{\|f\|_{L} \le 1} |E_{x \sim P}[f(x)] E_{y \sim Q}[f(y)]|$
- Make P the data distribution, and Q the generator distribution
- Make f_w be K-Lipschitz
 - Can do that by clipping all the weights to be in e.g [-0.01, 01]
 - Sketch of argument: the set of all functions is a closed set that way, so a function with a maximum K is somewhere in that closed set
 - Another argument: the first layer transforms the input by $W^{(1)}$, the second by $W^{(2)}$, etc. This is at most a small linear transformation for clipped weights, so the function is K-Lipschitz
 - If we find the sup for a K-Lipschitz function, a sup is actually attained for f = f/|K|

The Wasserstein GAN

- $\max_{w \in W} E_{x \sim p_{data}} f_w(x) E_{z \sim p(z)} f_w(g_\theta(z))$
- Alternately optimize the objective and the critic f_w

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

1: while θ has not converged do

2: **for**
$$t = 0, ..., n_{\text{critic}}$$
 do
3: Sample $\{x^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{r}$ a batch from the real data.
4: Sample $\{z^{(i)}\}_{i=1}^{m} \sim p(z)$ a batch of prior samples.
5: $g_{w} \leftarrow \nabla_{w} \left[\frac{1}{m} \sum_{i=1}^{m} f_{w}(x^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))\right]$
6: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_{w})$
7: $w \leftarrow \text{clip}(w, -c, c)$
8: **end for**
9: Sample $\{z^{(i)}\}_{i=1}^{m} \sim p(z)$ a batch of prior samples.
10: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))$
11: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta})$

12: end while

Intuition: Wasserstein GAN

- Theory says that we get a more informative gradient w.r.t $\boldsymbol{\theta}$
- The critic is not allowed to overfit because of clipping

Reminder: RMSProp

- rmsprop: Keep a moving average of the squared gradient for each weight $MeanSquare(w, t) = 0.9 MeanSquare(w, t-1) + 0.1 \left(\frac{\partial E}{\partial w}(t)\right)^2$
- Dividing the gradient by $\sqrt{MeanSquare(w, t)}$ makes the learning work much better (Tijmen Tieleman, unpublished).

Better ways of ensuring f_{θ} is K-Lipschitz

• Penalize the gradient of f_{θ} directly: optimize

$$E_{x \sim p_{\text{data}}}[f_{\theta}(x) - \lambda(||\nabla_x f_{\theta}(x)||_2 - 1)^2] - E_{z \sim p(z)}[f_{\theta}(G(z))]$$

make norm of gradient close to 1

Normalize the weights matrices by the matrix's largest singular value

 $\sigma(W) = \max_{h:h\neq 0} \frac{||Wh||}{||h||} = \max_{||h|| \le 1} ||Wh|| \quad \text{largest singular value of } W$

 $W_{\ell} \leftarrow \frac{W_{\ell}}{\sigma(W_{\ell})}$

https://cs182sp21.github.io/static/slides/lec-19.pdf