Wasserstein GAN

I'M WIIIII(IILE;OII IT

o

WIIY HlSTEIl

g ECE324, Winter 2022
b 1

https://c5236g.stanford.edu/memes/l/

Heavy math ahead, optional math
In green

The objective function of the
original GAN

* For a fixed generator G, the optimal discriminator is

.I“I.IIE'J.I'I.TI::E -I
Pdata i-ﬂ]' T P rI .|

D (x) =

* Proof: we are maximizing

V(G,D) = / Paaa (@) log(D(2))dz + /;le_'z'] log(l — Dig(z)))d=

S o

— / Paaa () log(D(zx)) + pg(x) log(l — D(x))dx

o -

For every x, the integrand is maximized at —2datat)
Pdata()+Pgx)

(alog(y)+blog(1-y) is maximized at a/(a+b) using calculus)

Reformulating the cost function

C((F) = max ViG, D)

=B py [l0g Dz (2)] + Eznp, log(1 — D (G(2)))]
=Eopius 108 D ()] + Exropy, [log(1 — D ()]

j”du[a{mjl]’J{‘.{EJ j|
—Eropy | 102 Eznp, |log |
Pdaia !ug Py () +p§.lri-'3]] " ho l” Pdaa (T) + Pyl x)

Divide each of the terms by two in order to get an expression in terms of KL
divergences

Pdata + Pg) + KL (pg

Pdata + Pg
2

= —log(4) + 2 - JSD (pdata ||pg)

(Jensen-Shannon divergence)

P+Q P+Q

1
JSD(PI1Q) =5 (KL(P|| =2) + KL(Q|| =)
 Another measure of how similar P and Q are
* Symmetric, unlike the KL divergence

Wasserstein Distance

* W(P,Q) = yelllr(llg,Q) E(x,y)~y[|x — y|]

* [I(P, Q) is the set of distributions over

R4m(P)+dim(Q) \yhose marginal are P and Q. For
y € II(P, Q), and densities p and Q for P, Q

| v(x,y)dx=q®), [v y)dy =p(x)

Wasserstein Distance intuition

* W(P,Q) = yelllr(llg,Q) E(x,y)~y[|x —y|] =

inf X — x,y)dxd
Jeinf S 1x = yly (x, y)dxdy

4, "/K::i{m 4 fow)
~ _,r'j. ‘\ I'_lI [
A l JON J P

‘F\ tjﬂ | \"-\ 1)

Ve I',
' d4 Al
— N
L->T(x)

https://kowshikchilamkurthy.medium.com/wasserstein-distance-contraction-mapping-and-modern-r
t

heory-93e f7402e867

Wasserstein Distance intuition

inf X — x,v)dxd
yEH(P’Q)fI yly(x,y)dxdy

* Want to move y(x,y) fromxtoy

* In total, move [y(x,y)dy = p(x) from x

move [y(x,y)dx = q(y) toy
so we don’t run out of mass

Wasserstein Distance dual
formulation

 Theorem (Kantorovich-Rubinestein):

W(P,Q) = | jfllllp |Ex~plf(x)] — Eyolf]|

* A function is K-Lipschitz if for all x, y

f(x) = fW)] = K[x =y

we write this as Hfl‘L <K

* Proof:
https://drive.google.com/file/d/0B6JeBUquZ5BwVI
V1dEpsTHVVbTA/view?usp=sharing&resourcekey=0
-5xbvKhDXZjrYRLfgppsHuUQ p. 121

https://drive.google.com/file/d/0B6JeBUquZ5BwVlV1dEpsTHVVbTA/view?usp=sharing&resourcekey=0-5xbvKhDXZjrYRLfqppsHuQ

Motivating example

e Let Z~Unif ([0,1])
* Let Py be the distribution (8, Z) € R*
* W(POIPG) — |0|

* Using the original definition, need to move the
probability mass by |0]

1
* JS(Po, Pg) =5 (KL(Po||) + KL(Py |
= log?2iff + O, and 0 otherW|se

Po+Pg P0+P9

)

Derivation for KL(Py|| POJ;PQ)

Po+Poy _ Po(x,y)
KL(Pol1=57=] Po (e y) o8 2 ey 43 4Y

po(x,y) is only non-zero x=0, pg (x, y) is only non
zero at x = 0 so the integral equals

f po(x,v) log Po(,)
o (po/2)(x,¥)

dxdy

= fpo(x, y)log 2 dxdy = log 2

Motivating example

* The JS distance does not provide gradient signal in
the motivating example

* The Wasserstein distance does

* In the motivating example, the support for the two
distribution is disjoint
* That may be unusual

e Butitis not unusual for the distribution to be supported
by different low-dimensional manifolds that intersect
but otherwise don’t overlap

Gradient visualization

p(x)
: : Pdata() v) : : pec(T)
/ \ m

real data generated data

what is the generator gradient here?

better D(x)

D(z)
better paaeate)

_— Pdatall G (‘T)

better pg(x)

nups://cs182sp21.github.io/s
tatic/slides/lec-19.pdf

The Wasserstein GAN

* W(P,Q) = sup |Ex.plf(x)]— Ey~Q[f(y)]|

|If1], =1

 Make P the data distribution, and Q the generator
distribution

* Make f,, be K-Lipschitz
e Can do that by clipping all the weights to be in e.g [-0.01, 01]

e Sketch of argument: the set of all functions is a closed set that way,
so a function with a maximum K is somewhere in that closed set

« Another argument: the first layer transforms the input by W, the
second by W(Z), etc. This is at most a small linear transformation
for clipped weights, so the function is K-Lipschitz

* If we find the sup for a K-Lipschitz function, a sup is actually
attained for f = f /| K|

14

The Wasserstein GAN

) \r/vneav?/(Ex“’pdatafW (X) o Ez~p(z)fw (99 (Z))

* Alternately optimize the objective and the critic f,,

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritie, the number of iterations of the critic per generator iteration.
Require: : w, initial critic parameters. 6, initial generator’s parameters.
1: while # has not converged do

2: for t =0,..., Neritic do

3 Sample {z(}™ ~ P, a batch from the real data.
4 Sample {z()}™ ~ p(2) a batch of prior samples.
5: Jw V“’ [m Z"l fw 1‘(‘)) m Z:ZI "’(qo("(l)))]
6: w—w+a- RMSProp(w Geo)

7 w « clip(w, —¢, ¢)

8 end for

9 Sample {z")}'" p(z) a batch of prior samples.

10: go VO,_" Z:" 1 fw(qg((1)))
11: 0 < 6 — a- RMSProp(0, gs)
12: end while

16

Intuition: Wasserstein GAN

* Theory says that we get a more informative
gradient w.r.t 0

 The critic is not allowed to overfit because of
clipping

Reminder: RMSProp

* rmsprop: Keep a moving average of the squared gradient for each weight

2
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) + 0.1 (a%w (t))

* Dividing the gradient by \/MeanSquare(w, 1) makes the learning work much
better (Tijmen Tieleman, unpublished).

18

Better ways of ensuring fg is K-
Lipschitz
* Penalize the gradient of fy directly: optimize

Eonpauafo(2) = M[Va fo(@)ll2 = 1)°] = Eznp(e) [fo(G(2))]

T

make norm of gradient close to 1

* Normalize the weights matrices by the matrix’s
largest singular value

] H'[{’th ‘r/-\ . r
o(W) = max = max ||[Wh|| largest singular value of W
h:hz0 [|Al[(jnf<
Wy n([";j{{;) https://cs182sp21.github.io/static/slides/lec-
7y

19.pdf

