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Pre-trained Language Models

• BERT (Devlin et al., 2019) and friends are the most 
popular starting point of current NLP systems
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BERTology

• BERTology investigates what BERT-like models learn
• Syntactic knowledge

• Semantic knowledge

• World knowledge
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Syntactic knowledge

• Syntax: the rules according to which sentences are 
formed 
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https://web.stanford.edu/~jurafsky/slp3/13.pd
f



Parse trees
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BERT’s syntactic representation 
study
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• Want to determine if BERT embeddings contain 
syntactic information

• Idea: can we predict the distance in the parse tree 
from the embeddings
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Aside: BERT embeddings
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The last layer serves as an encoding because we train by making ℎ𝑖
predict the i-th word
The i-th vector in an inner layer is related to the i-th word because 
of residual connections
Can concatenate the i-th vectors from different layers



• Let the embedding of the i-th word in sentence ℓ
be ℎ𝑖

ℓ

• Define the distance as

𝑑𝐵 ℎ𝑖
ℓ, ℎ𝑗

ℓ 2
= 𝐵 ℎ𝑖

ℓ − ℎ𝑗
ℓ

𝑇
𝐵 ℎ𝑖

ℓ − ℎ𝑗
ℓ

𝐵 is a matrix learned from the data by minimizing the 
following over all pairs of word in all sentences
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Distance in the parse tree



Results

• Computing the distance using the middle layer of 
BERT produces distances that are very similar to 
parse tree distances

10



Semantic knowledge

• Semantics: the meaning of words
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• Idea: study how BERT predicts masked words 
(“cloze task”)
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Semantic knowledge: summary

• BERT’s overall good performance sometimes relies 
on shortcuts – statistical patterns that are not 
directly connected to meaning

• BERT is good at identifying objects as belonging to 
categories
• E.g. robin is a bird

• BERT is bad at dealing with negation
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World knowledge
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Results competitive with other systems



Can Transformer-like architectures 
understand language?
• Argument for “yes”: remarkable performance on 

cloze tasks, remarkable ability to generate language

• Arguments for “no”
• Mistakes on cloze tasks show that the good performance 

is due merely to learning statistical patterns

• Humans can to attribute meaning to generated language 
even when it’s meaningless

• A bunch of matrix multiplications can’t understand 
anything
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Meaning

Definitions in Climbing toward NLU

• Form: any observable realization of language: 
marks on a page, pixels or bytes in memory, 
movements of articulators…

• Meaning: the relation between the form and 
something external to language

• Understanding: retrieving the communicative 
intent from an expression
• Communicative intent is about something outside the 

language (e.g. “Open the window!”  is about a the 
window)
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Communication

“The speaker has a certain communicative intent i, 
and chooses an expression e with a standing 
meaning s which is fit to express i in the current 
communicative situation. Upon hearing e, the 
listener then reconstructs s and uses their own 
knowledge of the communicative situation and their 
hypotheses about the speaker’s state of mind and 
intention in an attempt to deduce i.”
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This active participation of the listener is crucial to 
human communication For example, to make sense 
of (8) and (9) (from Clark, 1996, p.144), the listener 
has to calculate that Napoleon refers to a specific 
pose (hand inside coat flap) or that China trip refers 
to a person who has recently traveled to China. 

(8) The photographer asked me to do a Napoleon for 
the camera. 

(9) Never ask two China trips to the same party
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“We argue that a model of natural language that is 
trained purely on form will not learn meaning: if the 
training data is only form, there is not sufficient 
signal to learn the relation M between that form and 
the non-linguistic intent of human language users, 
nor C between form and the standing meaning the 
linguistic system assigns to each form.”

22



Aside: Searle’s Chinese Room 
Experiment
• A person is in a large room containing instructions 

for how to transform notes in Chinese to responses 
in Chinese

• The person doesn’t speak Chinese but follow the 
instructions

• Argument: the person doesn’t understand Chinese

• Counterargument:
• The person + the room (+ whatever energy is needed to 

go through the instructions in a short amount of time) is 
a complex system that might be said to understand 
Chinese
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The Octopus test

A and B, both fluent speakers of English, are independently stranded on two 
uninhabited islands. They soon discover that previous visitors to these islands have 
left behind telegraphs and that they can communicate with each other via an 
underwater cable. A and B start happily typing messages to each other. 
Meanwhile, O, a hyper-intelligent deep-sea octopus who is unable to visit or 
observe the two islands, discovers a way to tap into the underwater cable and 
listen in on A and B’s conversations. O knows nothing about English initially, but is 
very good at detecting statistical patterns. Over time, O learns to predict with 
great accuracy how B will respond to each of A’s utterances. O also observes that 
certain words tend to occur in similar contexts, and perhaps learns to generalize 
across lexical patterns by hypothesizing that they can be used somewhat 
interchangeably. Nonetheless, O has never observed these objects, and thus 
would not be able to pick out the referent of a word when presented with a set 
of (physical) alternatives. At some point, O starts feeling lonely. He cuts the 
underwater cable and inserts himself into the conversation, by pretending to be 
B and replying to A’s messages. Can O successfully pose as B without making A 
suspicious? This constitutes a weak form of the Turing test (weak because A has no 
reason to suspect she is talking to a nonhuman); the interesting question is 
whether O fails it because he has not learned the meaning relation, having seen 
only the form of A and B’s utterances
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Argument: the Octopus would not be able to fake a 
conversation where world knowledge is required

Now say that A has invented a new device, say a 
coconut catapult. She excitedly sends detailed 
instructions on building a coconut catapult to B, and 
asks about B’s experiences and suggestions for 
improvements. Even if O had a way of constructing 
the catapult underwater, he does not know what 
words such as rope and coconut refer to, and thus 
can’t physically reproduce the experiment
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Finally, A faces an emergency. She is suddenly 
pursued by an angry bear. She grabs a couple of 
sticks and frantically asks B to come up with a way to 
construct a weapon to defend herself. Of course, O 
has no idea what A “means”. Solving a task like this 
requires the ability to map accurately between words 
and real-world entities (as well as reasoning and 
creative thinking). It is at this point that O would fail 
the Turing test, if A hadn’t been eaten by the bear 
before noticing the deception.7
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Learning programming language 
semantics without grounding
Imagine that we were to train an LM on all of the 
well-formed Java code published on Github. The 
input is only the code. It is not paired with bytecode, 
nor a compiler, nor sample inputs and outputs for any 
specific program. We can use any type of LM we like 
and train it for as long as we like. We then ask the 
model to execute a sample program, and expect 
correct program output.
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Not just language modeling

What about systems which are trained on a task that is not 
language modeling — say, semantic parsing, or reading 
comprehension tests — and that use word embeddings from 
BERT or some other large LM as one component? Numerous 
papers over the past couple of years have shown that using 
such pretrained embeddings can boost the accuracy of the 
downstream system drastically, even for tasks that are clearly 
related to meaning. Our arguments do not apply to such 
scenarios: reading comprehension datasets include 
information which goes beyond just form, in that they specify 
semantic relations between pieces of text, and thus a 
sufficiently sophisticated neural model might learn some 
aspects of meaning when trained on such datasets. It also is 
conceivable that whatever information a pretrained LM 
captures might help the downstream task in learning 
meaning, without being meaning itself.
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Counterarguments

• Perhaps a tiny bit of grounding (digits of pi?) is 
enough if there is a lot of data
• Is missing just this tiny bit really important?

• Perhaps using Occam’s Razor is enough
• To explain a whole lot of text, it’s efficient to reinvent all 

of Physics

• “Meaning”/”Understanding” are properties of 
complex systems
• A large enough model is complex enough that it can 

understand in the sense that language models 
understand 
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