ECE324, Winter 2023

Slides from John Hewitt Michael Guerzhoy
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-

lecture09-transformers.pdf

Language models in the last 5
years

* Circa 2016, the de facto strategy in
NLP is to encode texts with a
bidirectional LSTM: (for example,
the source sentence in a
translation)

H-

* Define your output (parse,

sentence, summary) as a sequence,
and use an LSTM to generate it. i_i_

e Use attention to allow flexible
access to memory

Recurrent models: linear interaction distance =:.

* RNNs are unrolled “left-to-right” tasty pizza

* This encodes linear locality: a useful heuristic
* Nearby words often affect each other’s meaning

* Problem: RNNs take O(sequence length) steps for
distant word pairs to interact

O(sequence length)
A

- > - > ...4—bl

The chef who ... ;

Recurrent models: linear interaction distance

* O(sequence length) steps for distant word pairs to
interact means:

e Hard to learn long-distance dependencies (vanishing
gradient problems)

e Linear order of words is “baked in”

= ‘ ——*... —_— 200 — ——P=

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

Recurrent models: lack of parallelizability

* Forward and backward passes have O(sequence
length) unparallelalizable operations

e Can’t compute the state of an RNN with one matrix
multiplication: need to compute states sequentially
e Can’t use GPU parallelization
e (But can process multiple sequence at a time)

n—-E—».—uoo — — ooo—» ——-
EHi Bl i
- » eee—N

Numbers indicate min # of steps before a state can be computed

J

Alternative: word windows

 Word window models aggregate local context
* AKA 1D convolution

 Number of unparallelizable operations does not increase with
sequence length

window
window

embedding
h, h, h;

Numbers indicate min # of steps before a state can be computed

O

Alternative: word windows

» Stacking word-window layers allows interactions between words that
are farther apart

* Maximum interaction distances = seq length/window size
* More long-distance context would be ignored

Red states
indicate those
“visible” to h,

window (size=5)

window (size=5)

embedding

/ h; h, h;

Too far from h, to be considered

Alternative: attention

* Attention treats each word’s representation as a query to access and
incorporate information from a set of values

* Number of unparallelizable operations does not increase sequence
length

 Maximum interaction distance: O(1), since all words interact at every
layer!

attention All words attend

to all words in
attention

previous layer;
most arrows here
embedding are omitted
h, h, h,

(Vanilla) Self-attention

e Attention operates on queries, keys, and values.
* Queries g4, q>, --.
* Keys k4, k>, ...
* Values v4, v, ...

exp(e;;)
2. exp(e;;jr) -
Compute key- Compute attention Compute outputs as
query affinities weights from affinities weighted sum of values
(softmax)

* Self-attention: use q; = v; = k; = x; for layer x

Self attention blocks

. S i

self-attention

ki @1 V1 ky g2 v, k3 q3 Vs kr qr vr

VLY

self-attention

kl\i}'vl ky G2 v, ks q3 v3 kr qr vr
W4 W W3 Wr
The chef who food

Self-attention doesn’t know the order of its inputs.

10

Self-attention: sequence order

e Self-attention doesn’t know about the order of the
Inputs

* Make position vectors p; € R (same
dimensionality is x) fori € {1, 2, ..., T}

* I\/Iakefc'l- =xi+Pi
vy =v; +p;
qi = q; t+ D;
ki = k; +p;

Position vectors through sinusoids

Sinusoidal position representation: concatenate sinusoidal functions of varying
periods

(sin(i/100002°1/4)) : P
cos(i/100002*1/4) 5 ;_ = — —
P = : 5 =
s d £
sin(i/100002*3/d)
\(305(1'/100002*5/‘1)/ Index in the sequence

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

12

Position representation vectors learned from scratch

* Learned absolute position representations: Let all
p; be learnable parameters

* Learn a matrix p € R%*T, and let each p; be a column of
that matrix

* Pro: each position gets to be learned to fit the data
* Con: cannot extrapolate outside of 1, ..., T
* Most systems use this

Adding nonlinearities in self-attention

e Add feed-forward network to
post-process each output vector

i T i r
* Note that there are no i FTF FTF FTF

elementwise nonlinearities in self-attention
seIf—attent!on; stacklpg more %F L 1 :
self-attention layers just re- D atterkion T
averages value vectors

The chef who food
mi — MLP(OUtpUti) Intuition: the FF network processes the result of attention ‘

= W, x ReLU(W; X output; + b,) + b,

Masking the future in self-attention

* To use self-attention in decoders, we need to
ensure we can’t peek in the future

* We mask out attention to future words by setting
attention scoresto —oo T We can look at these

(not greyed out) words

A

(A\ |
)
\c)’\P‘ <0 d\é‘ \P\‘(\o

[START]

The

For encoding
these words

chef

who

The Transformer Encoder-Decoder

[predictions!]
t
Transformer

Decoder

[decoder attends :

to encoder states]

Transformer
Decoder

[output sequence]

+ _'|-....-’I

[input sequence]

Training the network

Qutput

Maximize the probabilities of the observed words Probabilties

In the training set

méix E logP(thwl...t—l) Add & Norm
t Feed
Forward
| Add & Norm ;
—Earc) Mult-Head
Feed Attention
Forward T 7 N x
—
N Add & Norm
f—'| Add & Norm | Wk
Multi-Head Multi-Head
Attention Attention
it At
e J \ —)
Positional @_@ 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

17

The Transformer Encoder: Key-Query-Value Attention

* Let x4, X, ..., X7 be the input vectors, x; € R?

* Then the keys, queries, and values are
« k; = x/K,K € R4
* q; = x;'Q, Q € R¥*?
e v; =x;'V,V € R4*4

* Allow for different aspects of the x vectors to be

used/emphasized in each of the three different
roles

The Transformer Encoder: Key-Query-Value Attention

e let X = [xl, ,XT] € RTXd
e Then XK € RT*4 XQ € RT*4 XV € RT*¢
* The output is softmax(XQ(XK))XV

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ(XK)T KT xT e RTXT

Next, softmax, and

compute the weighted softmax| xQkTXT | xy =
average with another

Txd
matrix multiplication. output € R

19

Multi-headed attention

. What?if we want to look in multiple places in the sentence at
oncer

* For word i, self-attention “looks” where x; QTKx is high, but maybe
we want to focus on different j for different reasons?

* We'll define multiple attention “heads” through multiple Q, K, V

entries
d

* Let Q;, K,V € Rdxﬁ, where h is the number of attention heads,
and /ranges from 1 to h

* Each attention head performs attention independently:
output; = softmax(XQ,;K/ XT)XV, where output, € R/"
* The outputs of all the heads are combined:
* output = Y[outputy; ...; outputy], where Y € R¥*?

* Each headfgets to “look” at different things, and construct value
vectors differently.

Multi-headed attention

Single-head attention
(just the query matrix)

X X0
Q =

Multi-head attention
(just two heads here)

X XQ; XQ,
Q:1Q; =

Same amount of
computation as
single-head self-
attention!

21

Residual connections

* Residual connections are a trick to help models

train better ﬁ'@%
3 IR

* Instead of XV = Layer(X(‘1)
[no residuals] [residuals]

X(l) [Loss Iandscape visualization,

Layer et : 018, on a ResNet]

» We let X = XU~ + Layer(X (- 1)) (so we onIy have
to learn “the residual” from the previous layer)

XD —) ayer ?—‘ x®

e Residual connections are thought to make the loss
landscape considerably smoother

x(-1

22

Layer normalization

e Layer normalization is a trick to help models train
faster.

* |[dea: cut down on uninformative variation in
hidden vector values by normalizing to unit mean
and standard deviation within each layer

e Let x € R? be an individual (word) vector in the
model

1 1 2
o let u = —Z-xj and o = \/Ezf(xf —,u)

* output =y

\/_+e+’8

Scaled dot product

 When dimensionality d becomes large, dot products
between vectors tend to become large.

e Because of this, inputs to the softmax function can be large,
making the gradients small.

e |Instead of the self-attention function we’ve seen
output; = softmax(XQ, K X)XV,

* We divide the attention scored by /d/h to stop the
scores from becoming large just as a function of d/h
(the dimensionality divided by the number of heads)

xQ;k! xT
* output; = Softmax< ety)XVl

\/%

[predictions!]

Looking back at the whole model, R
zooming in on a Decoder block: , Transformer
Decoder

t

Residual +tLayerNorm
Feed-Forward)
=

Residual + LayerNorm

T

Multi-Head Cross-Attention

t

Residual + LayerNorm

?
Masked Multi-Head Self-Attention

[input sequence]

37 [output sequence]

25

Cross-attention

* Let hy, ..., hy be the output vectors from the
Transformer encoder with x; € R%

* Let z4, ..., zr be the input vectors from the
Transformer decoder, z; € R

* Then keys and values are drawn from the encoder
¢ ki = Khl-,vl- = Vhl

* Queries are drawn from the decoder, q; = Qz;

Transformer complexity

e Quadratic compute in self-attention in the original
model

 Computing all pairs of interactions means our

computation grows quadratically with the sequence
length

* For recurrent models, it only grew linearly

Word structure and subword
models

* Baseline: a fixed vocabulary from the training set.
Unknown words are all mapped to UNK

word vocab mapping embedding

Common { hat - pizza (index)]
words .

learn - tasty (index) L
Variations { taaaaasty 4 UNK (index) —
misspellings laern - UNK (index) R
novel items Transformerify =2 UNK (index) I
2

Word structure and subword
models

* In many languages, finite vocabulary assumptions
make less sense than in English

 Example: Swahili verbs can have hundreds of
conjugations, each encoding a wide variety of
information. (Tense, mood, definiteness, negation,
information about the object, ++)

lllllllll

lllllll

e Conjugation of ambia
(to tell) from Wiktionary =

cccccc
.......

Byte-pair encoding algorithm

* Subword modeling in NLP encompasses a wide range of
methods for reasoning about structure below the word
level. (Parts of words, characters, bytes.)

 The dominant modern paradigm is to learn a vocabulary of
parts of words (subword tokens).

* At training and testing time, each word is split into a
sequence of known subwords

* Byte-pair encoding is a simple, effective strategy for
defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an
“end-of-word” symbol

2. Using a corpus of text, find the most common adjacent
characters “a,b”; add “ab” as a subword

3. Replace instances of the character pair with the new
subword; repeat until desired vocab size

Word structure and subword

models

 Common words end up being a part of the subword
vocabulary, while rarer words are split into

(sometimes intuitive, sometimes not) components

* In the worst case, words are split into as many
subwords as they have characters.

word
hat

Common

words |earn

misspellings laern

9

1 ;
Variations ~|: taaaaasty -
9

! \

novel items Transformerify

vocab mapping
hat

learn

taa## aaa#H# sty
la## erndt#
Transformer## ify

embedding

31

Pretraining Transformers

* |[dea: pre-train the network on a large corpus of
text

* Fine-tune on your dataset

Pretraining through language
modeling

* Language modeling task:

* Model pg(w;|wy.t—1), the
probability distribution for
the next word after wy.¢_1

e Lots of data to train on

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END ©/®

t 1 t t t t

Iroh goes to make tasty tea ... the movie was ...

What can language modelling tell
us?

| put __ fork down on the table.

The woman walked across the street,
checking for trafficover ___ shoulder.

| went to the ocean to see the fish, turtles, seals, and

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.
The movie was .

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.

Zuko left the
| was thinking about the sequence that goes

1,1, 2, 3,5, 8, 13, 21,

Using pre-trained decoders

* Ignore that they’re trained to model p(w¢|wy ¢_1)

* Fine-tune by training a classifier on the the hidden
state
h = Decoder(wy, ...w;)

Pre-training encoders

* |dea: replace some fraction of words in the input
with a special [MASK] token; predict those words
hy,..,hy = Encoder(wy, ..., wr)
yiNAhi + b

* Only add loss terms from words that are “masked
out”

went store

| [M] to the [M]

BERT: Bidirectional Encoder
Representations from Transformers

* Devlin et al., 2018 proposed the
“Masked LM” objective and released
the weiths of a pretrained Transformer,

a mode

they labeled BERT

e Some more details about Masked LM

for BERT: [Predict these!] we;nt t? stqrre
* Predict a random 15% of (sub)word
tokens Transformer
* Replace input word with [MASK] 80% of Encoder
the time
* Replace input word with a random token | | | |
10% of the time | pizza to the [M]
* Leave input word unchanged 10% of the
time (but still predict it!) I

 Why? Doesn’t let the model get complacent
and not build strong representations of non- [Replaced] [Not replaced] [Masked]
masked words. (No masks are seen at fine-
tuning time!)

 BERT was massively popular and hugely versatile;
finetuning BERT led to new state-ofthe-art results

on a broad range of tasks.

QQP: Quora Question Pairs (detect paraphrase *

qguestions)

QNLI: natural language inference over question®

answering data
SST-2: sentiment analysis

ColLA: corpus of linguistic acceptability (detect
whether sentences are grammatical.)

STS-B: semantic textual similarity
MRPC: microsoft paraphrase corpus
RTE: a small natural language inference corpus

38

	Slide 1: Transformers
	Slide 2: Language models in the last 5 years
	Slide 3: Recurrent models: linear interaction distance
	Slide 4: Recurrent models: linear interaction distance
	Slide 5: Recurrent models: lack of parallelizability
	Slide 6: Alternative: word windows
	Slide 7: Alternative: word windows
	Slide 8: Alternative: attention
	Slide 9: (Vanilla) Self-attention
	Slide 10: Self attention blocks
	Slide 11: Self-attention: sequence order
	Slide 12: Position vectors through sinusoids
	Slide 13: Position representation vectors learned from scratch
	Slide 14: Adding nonlinearities in self-attention
	Slide 15: Masking the future in self-attention
	Slide 16: The Transformer Encoder-Decoder
	Slide 17: Training the network
	Slide 18: The Transformer Encoder: Key-Query-Value Attention
	Slide 19: The Transformer Encoder: Key-Query-Value Attention
	Slide 20: Multi-headed attention
	Slide 21: Multi-headed attention
	Slide 22: Residual connections
	Slide 23: Layer normalization
	Slide 24: Scaled dot product
	Slide 25
	Slide 26: Cross-attention
	Slide 27: Transformer complexity
	Slide 28: Word structure and subword models
	Slide 29: Word structure and subword models
	Slide 30: Byte-pair encoding algorithm
	Slide 31: Word structure and subword models
	Slide 32: Pretraining Transformers
	Slide 33: Pretraining through language modeling
	Slide 34: What can language modelling tell us?
	Slide 35: Using pre-trained decoders
	Slide 36: Pre-training encoders
	Slide 37: BERT: Bidirectional Encoder Representations from Transformers
	Slide 38

