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Language models in the last 5 
years
• Circa 2016, the de facto strategy in 

NLP is to encode texts with a 
bidirectional LSTM: (for example, 
the source sentence in a 
translation) 

• Define your output (parse, 
sentence, summary) as a sequence, 
and use an LSTM to generate it.

• Use attention to allow flexible 
access to memory
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Recurrent models: linear interaction distance

• RNNs are unrolled “left-to-right”

• This encodes linear locality: a useful heuristic
• Nearby words often affect each other’s meaning

• Problem: RNNs take O(sequence length) steps for 
distant word pairs to interact
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Recurrent models: linear interaction distance

• O(sequence length) steps for distant word pairs to 
interact means:
• Hard to learn long-distance dependencies (vanishing 

gradient problems)

• Linear order of words is “baked in”
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Recurrent models: lack of parallelizability

• Forward and backward passes have O(sequence 
length) unparallelalizable operations
• Can’t compute the state of an RNN with one matrix 

multiplication: need to compute states sequentially
• Can’t use GPU parallelization

• (But can process multiple sequence at a time)
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Alternative: word windows

• Word window models aggregate local context

• AKA 1D convolution

• Number of unparallelizable operations does not increase with 
sequence length
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Alternative: word windows

• Stacking word-window layers allows interactions between words that 
are farther apart

• Maximum interaction distances = seq length/window size
• More long-distance context would be ignored
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Alternative: attention

• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values

• Number of unparallelizable operations does not increase sequence 
length

• Maximum interaction distance: O(1), since all words interact at every 
layer!
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(Vanilla) Self-attention

• Attention operates on queries, keys, and values.
• Queries 𝑞1, 𝑞2, …

• Keys 𝑘1, 𝑘2, …

• Values 𝑣1, 𝑣2…

• Self-attention: use q𝑖 = 𝑣𝑖 = 𝑘𝑖 = 𝑥𝑖 for layer x
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Self attention blocks
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Self-attention: sequence order

• Self-attention doesn’t know about the order of the 
inputs

• Make position vectors 𝑝𝑖 ∈ 𝑅𝑑 (same 
dimensionality is x) for 𝑖 ∈ {1, 2, … , 𝑇}

• Make 𝑥𝑖 = 𝑥𝑖 + 𝑝𝑖
𝑣𝑖 = 𝑣𝑖 + 𝑝𝑖
𝑞𝑖 = 𝑞𝑖 + 𝑝𝑖
෨𝑘𝑖 = 𝑘𝑖 + 𝑝𝑖
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Position vectors through sinusoids

• Sinusoidal position representation: concatenate sinusoidal functions of varying 
periods
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Position representation vectors learned from scratch

• Learned absolute position representations: Let all 
𝑝𝑖 be learnable parameters
• Learn a matrix 𝑝 ∈ 𝑅𝑑×𝑇, and let each 𝑝𝑖 be a column of 

that matrix

• Pro: each position gets to be learned to fit the data

• Con: cannot extrapolate outside of 1, …, T

• Most systems use this
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Adding nonlinearities in self-attention

• Add feed-forward network to 
post-process each output vector

• Note that there are no 
elementwise nonlinearities in 
self-attention; stacking more 
self-attention layers just re-
averages value vectors
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Masking the future in self-attention

• To use self-attention in decoders, we need to 
ensure we can’t peek in the future

• We mask out attention to future words by setting 
attention scores to −∞
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The Transformer Encoder-Decoder
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Training the network
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Maximize the probabilities of the observed words
In the training set

max
𝜃



𝑡

log 𝑃(𝑤𝑡|𝑤1…𝑡−1)



The Transformer Encoder: Key-Query-Value Attention

• Let 𝑥1, 𝑥2, … , 𝑥𝑇 be the input vectors, 𝑥𝑖 ∈ 𝑅𝑑

• Then the keys, queries, and values are
• 𝑘𝑖 = 𝑥𝑖

′𝐾, 𝐾 ∈ 𝑅𝑑×𝑑

• 𝑞𝑖 = 𝑥𝑖′𝑄, 𝑄 ∈ 𝑅𝑑×𝑑

• 𝑣𝑖 = 𝑥𝑖′𝑉, 𝑉 ∈ 𝑅𝑑×𝑑

• Allow for different aspects of the x vectors to be 
used/emphasized in each of the three different 
roles
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The Transformer Encoder: Key-Query-Value Attention

• Let X = 𝑥1; … ; 𝑥𝑇 ∈ 𝑅𝑇×𝑑

• Then 𝑋𝐾 ∈ 𝑅𝑇×𝑑, 𝑋𝑄 ∈ 𝑅𝑇×𝑑, 𝑋𝑉 ∈ 𝑅𝑇×𝑑

• The output is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄 𝑋𝐾 𝑇 𝑋𝑉
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Multi-headed attention

• What if we want to look in multiple places in the sentence at 
once?
• For word 𝑖, self-attention “looks” where 𝑥𝑖

𝑇𝑄𝑇𝐾𝑥𝑗 is high, but maybe 
we want to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q, K, V 
entries

• Let 𝑄𝑙 , 𝐾𝑙 , 𝑉𝑙 ∈ 𝑅𝑑×
𝑑

ℎ, where h is the number of attention heads, 
and l ranges from 1 to h

• Each attention head performs attention independently:
𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇 𝑋𝑉, where 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 ∈ 𝑅𝑑/ℎ

• The outputs of all the heads are combined:
• output = 𝑌 𝑜𝑢𝑡𝑝𝑢𝑡1; … ; 𝑜𝑢𝑡𝑝𝑢𝑡ℎ , where  𝑌 ∈ 𝑅𝑑×𝑑

• Each head gets to “look” at different things, and construct value 
vectors differently.
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Multi-headed attention
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Residual connections

• Residual connections are a trick to help models 
train better
• Instead of 𝑋(𝑖) = 𝐿𝑎𝑦𝑒𝑟 𝑋 𝑖−1

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + 𝐿𝑎𝑦𝑒𝑟 𝑋 𝑖−1 (so we only have 
to learn “the residual” from the previous layer)

• Residual connections are thought to make the loss 
landscape considerably smoother
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Layer normalization

• Layer normalization is a trick to help models train 
faster. 

• Idea: cut down on uninformative variation in 
hidden vector values by normalizing to unit mean 
and standard deviation within each layer

• Let 𝑥 ∈ 𝑅𝑑 be an individual (word) vector in the 
model

• Let 𝜇 =
1

𝑑
σ𝑗 𝑥𝑗 and 𝜎 =

1

𝑑
σ𝑗 𝑥𝑗 − 𝜇

2

• output = 𝛾
𝑥−𝜇

𝜎+𝜖
+ 𝛽
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Scaled dot product

• When dimensionality 𝑑 becomes large, dot products 
between vectors tend to become large. 
• Because of this, inputs to the softmax function can be large, 

making the gradients small.

• Instead of the self-attention function we’ve seen
𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇 𝑋𝑉𝑙,

• We divide the attention scored by 𝑑/ℎ to stop the 
scores from becoming large just as a function of d/h 
(the dimensionality divided by the number of heads)

• 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇

𝑑

ℎ

𝑋𝑉𝑙
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Cross-attention

• Let ℎ1, … , ℎ𝑇 be the output vectors from the 
Transformer encoder with 𝑥𝑖 ∈ 𝑅𝑑

• Let 𝑧1, … , 𝑧𝑇 be the input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ 𝑅𝑑

• Then keys and values are drawn from the encoder
• 𝑘𝑖 = 𝐾ℎ𝑖 , 𝑣𝑖 = 𝑉ℎ𝑖

• Queries are drawn from the decoder, 𝑞𝑖 = 𝑄𝑧𝑖
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Transformer complexity

• Quadratic compute in self-attention in the original 
model
• Computing all pairs of interactions means our 

computation grows quadratically with the sequence 
length

• For recurrent models, it only grew linearly
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Word structure and subword
models
• Baseline: a fixed vocabulary from the training set. 

Unknown words are all mapped to UNK
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Word structure and subword
models
• In many languages, finite vocabulary assumptions 

make less sense than in English 

• Example: Swahili verbs can have hundreds of 
conjugations, each encoding a wide variety of 
information. (Tense, mood, definiteness, negation, 
information about the object, ++)

• Conjugation of ambia

(to tell) from Wiktionary
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Byte-pair encoding algorithm

• Subword modeling in NLP encompasses a wide range of 
methods for reasoning about structure below the word 
level. (Parts of words, characters, bytes.)
• The dominant modern paradigm is to learn a vocabulary of 

parts of words (subword tokens).
• At training and testing time, each word is split into a 

sequence of known subwords

• Byte-pair encoding is a simple, effective strategy for 
defining a subword vocabulary. 

1. Start with a vocabulary containing only characters and an 
“end-of-word” symbol

2. Using a corpus of text, find the most common adjacent 
characters “a,b”; add “ab” as a subword

3. Replace instances of the character pair with the new 
subword; repeat until desired vocab size
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Word structure and subword
models
• Common words end up being a part of the subword

vocabulary, while rarer words are split into 
(sometimes intuitive, sometimes not) components

• In the worst case, words are split into as many 
subwords as they have characters. 
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Pretraining Transformers

• Idea: pre-train the network on a large corpus of 
text

• Fine-tune on your dataset
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Pretraining through language 
modeling
• Language modeling task:

• Model 𝑝𝜃(𝑤𝑡|𝑤1:𝑡−1), the 
probability distribution for 
the next word after 𝑤1:𝑡−1

• Lots of data to train on
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What can language modelling tell 
us?
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Using pre-trained decoders

• Ignore that they’re trained to model 𝑝(𝑤𝑡|𝑤1…𝑡−1)

• Fine-tune by training a classifier on the the hidden 
state

ℎ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑤1, …𝑤𝑡
𝑦~𝐴ℎ𝑇 + 𝑏
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Pre-training encoders

• Idea: replace some fraction of words in the input 
with a special [MASK] token; predict those words

ℎ1, … , ℎ𝑇 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑤1, … , 𝑤𝑇
𝑦𝑖~𝐴ℎ𝑖 + 𝑏

• Only add loss terms from words that are “masked 
out”
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BERT: Bidirectional Encoder 
Representations from Transformers

• Devlin et al., 2018 proposed the 
“Masked LM” objective and released 
the weights of a pretrained Transformer, 
a model they labeled BERT

• Some more details about Masked LM 
for BERT: 
• Predict a random 15% of (sub)word 

tokens
• Replace input word with [MASK] 80% of 

the time
• Replace input word with a random token 

10% of the time 
• Leave input word unchanged 10% of the 

time (but still predict it!) 
• Why? Doesn’t let the model get complacent 

and not build strong representations of non-
masked words. (No masks are seen at fine-
tuning time!)
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• BERT was massively popular and hugely versatile; 
finetuning BERT led to new state-ofthe-art results 
on a broad range of tasks. 
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