
Transformers

ECE324, Winter 2023

Michael GuerzhoySlides from John Hewitt
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-
lecture09-transformers.pdf

Language models in the last 5
years
• Circa 2016, the de facto strategy in

NLP is to encode texts with a
bidirectional LSTM: (for example,
the source sentence in a
translation)

• Define your output (parse,
sentence, summary) as a sequence,
and use an LSTM to generate it.

• Use attention to allow flexible
access to memory

2

Recurrent models: linear interaction distance

• RNNs are unrolled “left-to-right”

• This encodes linear locality: a useful heuristic
• Nearby words often affect each other’s meaning

• Problem: RNNs take O(sequence length) steps for
distant word pairs to interact

3

Recurrent models: linear interaction distance

• O(sequence length) steps for distant word pairs to
interact means:
• Hard to learn long-distance dependencies (vanishing

gradient problems)

• Linear order of words is “baked in”

4

Recurrent models: lack of parallelizability

• Forward and backward passes have O(sequence
length) unparallelalizable operations
• Can’t compute the state of an RNN with one matrix

multiplication: need to compute states sequentially
• Can’t use GPU parallelization

• (But can process multiple sequence at a time)

5

Alternative: word windows

• Word window models aggregate local context

• AKA 1D convolution

• Number of unparallelizable operations does not increase with
sequence length

6

Alternative: word windows

• Stacking word-window layers allows interactions between words that
are farther apart

• Maximum interaction distances = seq length/window size
• More long-distance context would be ignored

7

Alternative: attention

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values

• Number of unparallelizable operations does not increase sequence
length

• Maximum interaction distance: O(1), since all words interact at every
layer!

8

(Vanilla) Self-attention

• Attention operates on queries, keys, and values.
• Queries 𝑞1, 𝑞2, …

• Keys 𝑘1, 𝑘2, …

• Values 𝑣1, 𝑣2…

• Self-attention: use q𝑖 = 𝑣𝑖 = 𝑘𝑖 = 𝑥𝑖 for layer x

9

Self attention blocks

10

Self-attention: sequence order

• Self-attention doesn’t know about the order of the
inputs

• Make position vectors 𝑝𝑖 ∈ 𝑅𝑑 (same
dimensionality is x) for 𝑖 ∈ {1, 2, … , 𝑇}

• Make ෤𝑥𝑖 = 𝑥𝑖 + 𝑝𝑖
෤𝑣𝑖 = 𝑣𝑖 + 𝑝𝑖
෤𝑞𝑖 = 𝑞𝑖 + 𝑝𝑖
෨𝑘𝑖 = 𝑘𝑖 + 𝑝𝑖

11

Position vectors through sinusoids

• Sinusoidal position representation: concatenate sinusoidal functions of varying
periods

12

Position representation vectors learned from scratch

• Learned absolute position representations: Let all
𝑝𝑖 be learnable parameters
• Learn a matrix 𝑝 ∈ 𝑅𝑑×𝑇, and let each 𝑝𝑖 be a column of

that matrix

• Pro: each position gets to be learned to fit the data

• Con: cannot extrapolate outside of 1, …, T

• Most systems use this

13

Adding nonlinearities in self-attention

• Add feed-forward network to
post-process each output vector

• Note that there are no
elementwise nonlinearities in
self-attention; stacking more
self-attention layers just re-
averages value vectors

14

Masking the future in self-attention

• To use self-attention in decoders, we need to
ensure we can’t peek in the future

• We mask out attention to future words by setting
attention scores to −∞

15

The Transformer Encoder-Decoder

16

Training the network

17

Maximize the probabilities of the observed words
In the training set

max
𝜃

෍

𝑡

log 𝑃(𝑤𝑡|𝑤1…𝑡−1)

The Transformer Encoder: Key-Query-Value Attention

• Let 𝑥1, 𝑥2, … , 𝑥𝑇 be the input vectors, 𝑥𝑖 ∈ 𝑅𝑑

• Then the keys, queries, and values are
• 𝑘𝑖 = 𝑥𝑖

′𝐾, 𝐾 ∈ 𝑅𝑑×𝑑

• 𝑞𝑖 = 𝑥𝑖′𝑄, 𝑄 ∈ 𝑅𝑑×𝑑

• 𝑣𝑖 = 𝑥𝑖′𝑉, 𝑉 ∈ 𝑅𝑑×𝑑

• Allow for different aspects of the x vectors to be
used/emphasized in each of the three different
roles

18

The Transformer Encoder: Key-Query-Value Attention

• Let X = 𝑥1; … ; 𝑥𝑇 ∈ 𝑅𝑇×𝑑

• Then 𝑋𝐾 ∈ 𝑅𝑇×𝑑, 𝑋𝑄 ∈ 𝑅𝑇×𝑑, 𝑋𝑉 ∈ 𝑅𝑇×𝑑

• The output is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄 𝑋𝐾 𝑇 𝑋𝑉

19

Multi-headed attention

• What if we want to look in multiple places in the sentence at
once?
• For word 𝑖, self-attention “looks” where 𝑥𝑖

𝑇𝑄𝑇𝐾𝑥𝑗 is high, but maybe
we want to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q, K, V
entries

• Let 𝑄𝑙 , 𝐾𝑙 , 𝑉𝑙 ∈ 𝑅𝑑×
𝑑

ℎ, where h is the number of attention heads,
and l ranges from 1 to h

• Each attention head performs attention independently:
𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇 𝑋𝑉, where 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 ∈ 𝑅𝑑/ℎ

• The outputs of all the heads are combined:
• output = 𝑌 𝑜𝑢𝑡𝑝𝑢𝑡1; … ; 𝑜𝑢𝑡𝑝𝑢𝑡ℎ , where 𝑌 ∈ 𝑅𝑑×𝑑

• Each head gets to “look” at different things, and construct value
vectors differently.

20

Multi-headed attention

21

Residual connections

• Residual connections are a trick to help models
train better
• Instead of 𝑋(𝑖) = 𝐿𝑎𝑦𝑒𝑟 𝑋 𝑖−1

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + 𝐿𝑎𝑦𝑒𝑟 𝑋 𝑖−1 (so we only have
to learn “the residual” from the previous layer)

• Residual connections are thought to make the loss
landscape considerably smoother

22

Layer normalization

• Layer normalization is a trick to help models train
faster.

• Idea: cut down on uninformative variation in
hidden vector values by normalizing to unit mean
and standard deviation within each layer

• Let 𝑥 ∈ 𝑅𝑑 be an individual (word) vector in the
model

• Let 𝜇 =
1

𝑑
σ𝑗 𝑥𝑗 and 𝜎 =

1

𝑑
σ𝑗 𝑥𝑗 − 𝜇

2

• output = 𝛾
𝑥−𝜇

𝜎+𝜖
+ 𝛽

23

Scaled dot product

• When dimensionality 𝑑 becomes large, dot products
between vectors tend to become large.
• Because of this, inputs to the softmax function can be large,

making the gradients small.

• Instead of the self-attention function we’ve seen
𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇 𝑋𝑉𝑙,

• We divide the attention scored by 𝑑/ℎ to stop the
scores from becoming large just as a function of d/h
(the dimensionality divided by the number of heads)

• 𝑜𝑢𝑡𝑝𝑢𝑡𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑋𝑄𝑙𝐾𝑙

𝑇𝑋𝑇

𝑑

ℎ

𝑋𝑉𝑙

24

25

Cross-attention

• Let ℎ1, … , ℎ𝑇 be the output vectors from the
Transformer encoder with 𝑥𝑖 ∈ 𝑅𝑑

• Let 𝑧1, … , 𝑧𝑇 be the input vectors from the
Transformer decoder, 𝑧𝑖 ∈ 𝑅𝑑

• Then keys and values are drawn from the encoder
• 𝑘𝑖 = 𝐾ℎ𝑖 , 𝑣𝑖 = 𝑉ℎ𝑖

• Queries are drawn from the decoder, 𝑞𝑖 = 𝑄𝑧𝑖

26

Transformer complexity

• Quadratic compute in self-attention in the original
model
• Computing all pairs of interactions means our

computation grows quadratically with the sequence
length

• For recurrent models, it only grew linearly

27

Word structure and subword
models
• Baseline: a fixed vocabulary from the training set.

Unknown words are all mapped to UNK

28

Word structure and subword
models
• In many languages, finite vocabulary assumptions

make less sense than in English

• Example: Swahili verbs can have hundreds of
conjugations, each encoding a wide variety of
information. (Tense, mood, definiteness, negation,
information about the object, ++)

• Conjugation of ambia

(to tell) from Wiktionary

29

Byte-pair encoding algorithm

• Subword modeling in NLP encompasses a wide range of
methods for reasoning about structure below the word
level. (Parts of words, characters, bytes.)
• The dominant modern paradigm is to learn a vocabulary of

parts of words (subword tokens).
• At training and testing time, each word is split into a

sequence of known subwords

• Byte-pair encoding is a simple, effective strategy for
defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an
“end-of-word” symbol

2. Using a corpus of text, find the most common adjacent
characters “a,b”; add “ab” as a subword

3. Replace instances of the character pair with the new
subword; repeat until desired vocab size

30

Word structure and subword
models
• Common words end up being a part of the subword

vocabulary, while rarer words are split into
(sometimes intuitive, sometimes not) components

• In the worst case, words are split into as many
subwords as they have characters.

31

Pretraining Transformers

• Idea: pre-train the network on a large corpus of
text

• Fine-tune on your dataset

32

Pretraining through language
modeling
• Language modeling task:

• Model 𝑝𝜃(𝑤𝑡|𝑤1:𝑡−1), the
probability distribution for
the next word after 𝑤1:𝑡−1

• Lots of data to train on

33

What can language modelling tell
us?

34

Using pre-trained decoders

• Ignore that they’re trained to model 𝑝(𝑤𝑡|𝑤1…𝑡−1)

• Fine-tune by training a classifier on the the hidden
state

ℎ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑤1, …𝑤𝑡
𝑦~𝐴ℎ𝑇 + 𝑏

35

Pre-training encoders

• Idea: replace some fraction of words in the input
with a special [MASK] token; predict those words

ℎ1, … , ℎ𝑇 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑤1, … , 𝑤𝑇
𝑦𝑖~𝐴ℎ𝑖 + 𝑏

• Only add loss terms from words that are “masked
out”

36

BERT: Bidirectional Encoder
Representations from Transformers

• Devlin et al., 2018 proposed the
“Masked LM” objective and released
the weights of a pretrained Transformer,
a model they labeled BERT

• Some more details about Masked LM
for BERT:
• Predict a random 15% of (sub)word

tokens
• Replace input word with [MASK] 80% of

the time
• Replace input word with a random token

10% of the time
• Leave input word unchanged 10% of the

time (but still predict it!)
• Why? Doesn’t let the model get complacent

and not build strong representations of non-
masked words. (No masks are seen at fine-
tuning time!)

37

• BERT was massively popular and hugely versatile;
finetuning BERT led to new state-ofthe-art results
on a broad range of tasks.

38

	Slide 1: Transformers
	Slide 2: Language models in the last 5 years
	Slide 3: Recurrent models: linear interaction distance
	Slide 4: Recurrent models: linear interaction distance
	Slide 5: Recurrent models: lack of parallelizability
	Slide 6: Alternative: word windows
	Slide 7: Alternative: word windows
	Slide 8: Alternative: attention
	Slide 9: (Vanilla) Self-attention
	Slide 10: Self attention blocks
	Slide 11: Self-attention: sequence order
	Slide 12: Position vectors through sinusoids
	Slide 13: Position representation vectors learned from scratch
	Slide 14: Adding nonlinearities in self-attention
	Slide 15: Masking the future in self-attention
	Slide 16: The Transformer Encoder-Decoder
	Slide 17: Training the network
	Slide 18: The Transformer Encoder: Key-Query-Value Attention
	Slide 19: The Transformer Encoder: Key-Query-Value Attention
	Slide 20: Multi-headed attention
	Slide 21: Multi-headed attention
	Slide 22: Residual connections
	Slide 23: Layer normalization
	Slide 24: Scaled dot product
	Slide 25
	Slide 26: Cross-attention
	Slide 27: Transformer complexity
	Slide 28: Word structure and subword models
	Slide 29: Word structure and subword models
	Slide 30: Byte-pair encoding algorithm
	Slide 31: Word structure and subword models
	Slide 32: Pretraining Transformers
	Slide 33: Pretraining through language modeling
	Slide 34: What can language modelling tell us?
	Slide 35: Using pre-trained decoders
	Slide 36: Pre-training encoders
	Slide 37: BERT: Bidirectional Encoder Representations from Transformers
	Slide 38

